A cell formation approach based on cluster analysis is developed for the configuration of manufacturing cells. Cell formation, which is to group machines and parts into machine cells and the associated part families, is implemented to add the flexibility and efficiency to manufacturing systems. In order to develop an efficient clustering procedure, this paper proposes a cluster analysis-based approach developed by incorporating and modifying two cluster analysis methods, a hierarchical clustering and a non-hierarchical clustering method. The objective of the proposed approach is to minimize intercellular movements and maximize the machine utilization within clusters. The proposed approach is tested on the cell formation problems and is compared with other well-known methodologies available in the literature. The result shows that the proposed approach is efficient enough to yield a good quality solution no matter what the difficulty of data sets is, ill or well-structured.
Job efficiency and productivity of a manufacturing system with frequent job schedule changes are affected by performance of information system between job order planners anti manufacturing device operators. This paper describes implementation of concurrent information system which can active identify machine status and dispatch job orders to operators in a machine shop. Client and server environment for various machinery is implemented using OSI based network between shop floor control system and manufacturing devices. Portability and scalability are among many characteristics of the implemented system. The developed client and server system is expected to realize high productivity for manufacturing device.
The purpose of this study is to present a novel indicator for analyzing machine failure based on its idle time and productivity. Existing machine repair plan was limited to machine experts from its manufacturing industries. This study evaluates the repair status of machines and extracts machines that need improvement. In this study, F-RPN was calculated using the etching process data provided by the 2018 PHM Data Challenge. Each S(S: Severity), O(O: Occurence), D(D: Detection) is divided into the idle time of the machine, the number of fault data, and the failure rate, respectively. The repair status of machine is quantified through the F-RPN calculated by multiplying S, O, and D. This study conducts a case study of machine in a semiconductor etching process. The process capability index has the disadvantage of not being able to divide the values outside the range. The performance of this index declines when the manufacturing process is under control, hereby introducing F-RPN to evaluate machine status that are difficult to distinguish by process capability index.
Modeling and control of human-involved manufacturing systems poses a huge challenge on how to model all possible interactions among system components within the time and space dimensions. As the manufacturing environment are getting complicated, the importance of human in the manufacturing system is getting more and more spotlighted to incorporate the manufacturing flexibility. This paper presents a formal modeling methodology of affordance-based MPSG (Message-based Part State Graph) for a human-machine collaboration system incorporating supervisory control scheme for flexible manufacturing systems in automotive industry. Basically, we intend to extend the existing model of affordance-based MPSG to the real industrial application of humanmachine cooperative environments. The suggested extension with the real industrial example is illustrated in three steps; first, the manufacturing process and relevant data are analyzed in perspectives of MABA-MABA and the supervisory control; second, the manufacturing processes and task allocation between human and machine are mapped onto the concept of MABA-MABA; and the last, the affordance-based MPSG of humanmachine collaboration for the manufacturing process is presented with UMLs for verification.
Purpose: The purpose of this study is to examine machine learning use cases in manufacturing companies from a digital quality management (DQM) perspective and to analyze and present machine learning research patterns from a quality management perspective. Methods: This study was conducted based on systematic literature review methodology. A comprehensive and systematic review was conducted on manufacturing papers covering the overall quality management process from 2015 to 2022. A total of 3 research questions were established according to the goal of the study, and a total of 5 literature selection criteria were set, based on which approximately 110 research papers were selected. Based on the selected papers, machine learning research patterns according to quality management were analyzed. Results: The results of this study are as follows. Among quality management activities, it can be seen that research on the use of machine learning technology is being most actively conducted in relation to quality defect analysis. It suggests that research on the use of NN-based algorithms is taking place most actively compared to other machine learning methods across quality management activities. Lastly, this study suggests that the unique characteristics of each machine learning algorithm should be considered for efficient and effective quality management in the manufacturing industry. Conclusion: This study is significant in that it presents machine learning research trends from an industrial perspective from a digital quality management perspective and lays the foundation for presenting optimal machine learning algorithms in future quality management activities.
Although there are numerous studies that address the problem of optimal machine grouping and part family classification for cellular manufacturing, little research has been reported that studies the conditions where cellular manufacturing is appropriate. This paper, in order to evaluate and compare the job shop with the GT cellular shop, the performance of those shops were simulated by using SIMAN. We tested the effect of independent variables including changes of product demands, intercell flow level, group setup time, processing time variability, variety of material handling systems, and job properties (ratio of processing time and material handling time). And also performance measures (dependent variables), such as machine utilization, mean flow time, average waiting time, and throughput rate, are discussed. Job shop model and GT cellular shop written in SIMAN simulation language were used in this study. These systems have sixteen machines which are aggregated as five machine stations using the macro feature of SIMAN. The results of this research help to better understand the effect of production factors on the performance of cellular manufacturing systems and to identify some of the necessary conditions required to make these systems perform better than traditional job shops. Therefore, this research represents one more step towards the characterization of shops which may benefit from cellular manufacturing.
In order to implement Artificial Intelligence, various technologies have been widely used. Artificial Intelligence is applied for many industrial product and machine tools are the center of manufacturing devices in intelligent manufacturing system. The purpose of this paper is to present the construction of Rule Base for knowledge structure that is applicable to machine tools. This system is that decision whether to act in accordance with machine status is support system. It constructs Rule Base of knowledge used of machine toots. The constructed Rule Base facilitates the effective operation and control of machine tools and will provide a systematic way to integrate the expert's knowledge that will apply Intelligent Machine Tools.
Cellular manufacturing(CM) is a philosophy and innovation to improve manufacturing productivity and flexibility. Cell formation(CF), the first and key problem faced in designing an effective CM system, is a process whereby parts with similar design features or Processing requirements are grouped into part families, and the corresponding machines into machine cells. Cell formation solutions often contain exceptional elements(EEs). EE create interactions between two manufacturing cells. A policy dealing with EEs considers minimizing the total costs of three important costs; (1)intercellular transfer (2)machine duplication and (3)subcontracting. This paper presents an effective cell formation method with fuzzy nonlinear mixed-integer programming simultaneously to form manufacturing cells and to minimize the total costs of eliminating exceptional elements.
본 연구는 전자라이터용 에폭시 정량공급장치의 개발에 관한 것으로써 기존의 수작업에 의한 생산을 자동화함으로 하여 품질의 균일화를 도모하고 또한 납기준수를 위한 생산성 향상에 기반을 둔 개발로서 전자라이터의 핵심 부품이라고 할 수 있는 Piezo ignitor절연부에 에폭시를 정량으로 주입할 수 있게 함으로서 품질 및 생산목표를 달성하고 기업의 이윤을 극대화하는데 맞추었다.
Continuous industrial development has led to a better quality of life for everyone, even further accelerating industrial growth. Industrial development, however, has also caused environmental degradation, which is posing a serious threat to humanity. It has also encouraged the indiscriminate use of limited resources, causing resource depletion. Efficient resource management based on resource circulation is critical to saving resources. Resource circulation methods are as follows: reducing the use of resources in the manufacturing process, recycling used or reprocessed products and reusing used resources without being reprocessed, remanufacturing with end-of-life products with disassembled parts. Furthermore, remanufacturing process including cleaning, inspection, repairing, and reassembling facilitate performance level as well as new typical products. It is noteworthy that the remanufacturing of machine tools can significantly save resources because their structural parts are substantially large in size. Machine tools have served as a foundation for the manufacturing industry, which has driven Korea's industrial development. Nevertheless, a few research has been reported for remanufacturing technology with used machine tools. Relevant research of developing a remanufacturing process chart and method is prerequisite for saving the resource and environments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.