• Title/Summary/Keyword: Industrial Design Engineering

Search Result 5,482, Processing Time 0.031 seconds

A review on recent advances in water and wastewater treatment facilities management for earthquake disaster response (지진발생 대응을 위한 상하수도시설 관리 및 기술 현황에 대한 고찰)

  • Park, Jungsu;Choi, June-Seok;Kim, Keugtae;Yoon, Younghan;Park, Jae-Hyeoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.1
    • /
    • pp.9-21
    • /
    • 2020
  • The proper operation and safety management of water and wastewater treatment systems are essential for providing stable water service to the public. However, various natural disasters including floods, large storms, volcano eruptions and earthquakes threaten public water services by causing serious damage to water and wastewater treatment plants and pipeline systems. Korea is known as a country that is relatively safe from earthquakes, but the recent increase in the frequency of earthquakes has increased the need for a proper earthquake management system. Interest in research and the establishment of legal regulations has increased, especially since the large earthquake in Gyeongju in 2016. Currently, earthquakes in Korea are managed by legal regulations and guidelines integrated with other disasters such as floods and large storms. The legal system has long been controlled and relatively well managed, but technical research has made limited progress since it was considered in the past that Korea is safe from earthquake damage. Various technologies, including seismic design and earthquake forecasting, are required to minimize possible damages from earthquakes, so proper research is essential. This paper reviews the current state of technology development and legal management systems to prevent damages and restore water and wastewater treatment systems after earthquakes in Korea and other countries. High technologies such as unmanned aerial vehicles, wireless networks and real-time monitoring systems are already being applied to water and wastewater treatment processes, and to further establish the optimal system for earthquake response in water and wastewater treatment facilities, continuous research in connection with the Fourth Industrial Revolution, including information and communications technologies, is essential.

Design of Pattern Classifier for Electrical and Electronic Waste Plastic Devices Using LIBS Spectrometer (LIBS 분광기를 이용한 폐소형가전 플라스틱 패턴 분류기의 설계)

  • Park, Sang-Beom;Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.477-484
    • /
    • 2016
  • Small industrial appliances such as fan, audio, electric rice cooker mostly consist of ABS, PP, PS materials. In colored plastics, it is possible to classify by near infrared(NIR) spectroscopy, while in black plastics, it is very difficult to classify black plastic because of the characteristic of black material that absorbs the light. So the RBFNNs pattern classifier is introduced for sorting electrical and electronic waste plastics through LIBS(Laser Induced Breakdown Spectroscopy) spectrometer. At the preprocessing part, PCA(Principle Component Analysis), as a kind of dimension reduction algorithms, is used to improve processing speed as well as to extract the effective data characteristics. In the condition part, FCM(Fuzzy C-Means) clustering is exploited. In the conclusion part, the coefficients of linear function of being polynomial type are used as connection weights. PSO and 5-fold cross validation are used to improve the reliability of performance as well as to enhance classification rate. The performance of the proposed classifier is described based on both optimization and no optimization.

Field Scale Study for Energy Efficiency Improvement of Crematory System by the Shape Optimization of Combustion Chamber (화장로 형상 최적화를 통한 에너지효율개선을 위한 실증연구)

  • Won, Yong-Tae;Lee, Seung-Mok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.546-555
    • /
    • 2019
  • The purpose of this study was to improve the performance of the bogie-type crematory, which is the mainstream of domestic crematory equipment. A field scale technology was investigated via increasing the volume by changing the shape of the furnace and reducing the cremation time and saving the energy usage through the optimization of burner combustion control. First, the optimized structural design through thermal flow analysis increases the volume of the main combustion chamber by about 70%, which increases the residence time of the combustion flue gas. A designed pilot crematory was then installed and the combustion behavior was tested under various operating conditions and the optimum operating plan was derived from for each furnace shape. Based on the results, the practically applicable crematory was designed and installed at Y crematorium in the P City. Optimal combustion conditions could be derived through operating the demonstration crematory furnace. The crematory time and fuel consumption could be minimized by increasing the energy efficiency by increasing the residence time of high temperature combustion flue gas. In other words, the crematory time and fuel consumption were 38 min and $21.8Nm^3$, respectively which were shortened by 44.1 and 54.4% lower than that of the existing crematory, respectively.

Numerical Study on Performance of PEMFC with Block and Sub-channel of Cathode Flow Field (캐소드 유로에서 블록과 서브 채널의 고분자전해질 연료전지의 성능에 관한 전산해석 연구)

  • Jo, Seonghun;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.613-620
    • /
    • 2021
  • A flow channel shape of PEMFC has an influence on the internal flow uniformity. If the reactant distribution in a flow path is not uniform during operation, both catalyst deactivation and mechanical damage of membrane could occur resulting in decreasing the membrane electrode assembly (MEA) durability. Numerous studies concerning flow design have been conducted to make smooth supply and uniform distribution of reactants in fuel cells. The baffle of flow path could improve fuel cell performance through the forced convection effect. A sub-channel, as an additional air flow path, could increase the reactant concentration and reduce the mass transfer loss via a smooth water discharge. In this study, computational fluid dynamics (CFD) was used to analyze the effect of blocks and sub-channels on the current density and oxygen concentration of the fuel cell. As a result, the limit current density and oxygen concentration at a rear block increased when using blocks and sub-channels in a flow channel. In particular, the current density increased significantly when the sub-channel was placed between two blocks. Also, the sub-channel position was optimized by analyzing the oxygen concentration, and the oxygen concentration was recovered at a rear block in the fuel cell.

Carbon Dioxide Fixation and Light Source Effects of Spirulina platensis NIES 39 for LED Photobioreactor Design (Spirulina platensis NIES 39를 이용한 LED 광생물반응기에서의 이산화탄소 고정화와 광원 효과)

  • Kim, Ji-Youn;Joo, Hyun;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.301-307
    • /
    • 2011
  • Optimal culture conditions of Spirulina platensis NIES 39 have been established using different types of light sources. Several types of photobioreactors were designed and the increase of biomass, the amount of $CO_2$, fixation and the production of chlorophyll content were studied. The result revealed that the input conditions of a 10 min period per 4 h at the condition of 5% $CO_2$ and 0.1 vvm, were excellent in the growth. The growth showing the maximum biomass accumulation is limited to 1.411 g/L when using the fluorescent bulb and the low powered surface mount device (SMD) type LEDs which were equipped-inside in the photobioreactor. However, the biomass exceeded up to 1.758 g/L level when a high powered red LED (color temperature : 12000 K) photobioreactor system was used. The $CO_2$ fixation speed and rate were increased. Although the total production of chlorophyll content undergoes a proportional increase in the biomass, the net content per dry cell weight (DCW) showed the higher production with a blue LED (color temperature : 7500 K) light than that of any other wavelengths. The carbon dioxide loss was marked as 0.15% of the inlet gas (5% $CO_2/Air$, v/v) at the maximum biomass culture condition.

Development of Evaluation Model for Learning Company Participating Work-Study Parallel Program using AHP (AHP를 활용한 일학습병행 학습기업 평가모형 개발)

  • Dong-Wook Kim;Hwan Young Choi
    • Journal of Practical Engineering Education
    • /
    • v.15 no.3
    • /
    • pp.671-679
    • /
    • 2023
  • This study aims to establish an evaluation model by quantifying the evaluation index as a follow-up study to the development of evaluation index for work-study parallel learning companies. An evaluation model was established by verifying the 2nd level components based on the quantitative factors of the learning company, the qualitative factors, the competency factors of the person in charge, and the competency factors of the learning workers, which are the highest-level components derived from previous study. For the evaluation of a learning company, an AHP survey was conducted with experts in charge of the company consulting to derive important factors that determine the quality of on-site education and training, and the evaluation model of the learning company was completed and grouped by calculating the weight between evaluation items proceeded. Work-study parallel program was promoted as a key policy to resolve the mismatch between industrial sites and school education and realize a competency-centered society, and as of December 2022, 16,664 companies participated in the training. Learning companies play a very important role as education and training supply organizations that conduct field training. It is expected that the support and consulting plan for each level of learning companies according to the evaluation model presented in this study will be used as basic data to improve the quality of work-study parallel program.

Development of Web-based Construction-Site-Safety-Management Platform Using Artificial Intelligence (인공지능을 이용한 웹기반 건축현장 안전관리 플랫폼 개발)

  • Siuk Kim;Eunseok Kim;Cheekyeong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.77-84
    • /
    • 2024
  • In the fourth industrial-revolution era, the construction industry is transitioning from traditional methods to digital processes. This shift has been challenging owing to the industry's employment of diverse processes and extensive human resources, leading to a gradual adoption of digital technologies through trial and error. One critical area of focus is the safety management at construction sites, which is undergoing significant research and efforts towards digitization and automation. Despite these initiatives, recent statistics indicate a persistent occurrence of accidents and fatalities in construction sites. To address this issue, this study utilizes large-scale language-model artificial intelligence to analyze big data from a construction safety-management information network. The findings are integrated into on-site models, which incorporate real-time updates from detailed design models and are enriched with location information and spatial characteristics, for enhanced safety management. This research aims to develop a big-data-driven safety-management platform to bolster facility and worker safety by digitizing construction-site safety data. This platform can help prevent construction accidents and provide effective education for safety practices.

Developing Bike Road Design Alternatives Considering Land Use Characteristics (토지이용을 고려한 자전거도로 설계대안의 개발)

  • Kang, Kyeong-Mi;Kim, Eung-Cheol
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.93-102
    • /
    • 2011
  • The Korean government recently has focused on variety of policies to promote the use of bikes to control the emission of carbon. However, bike facilities with no regard to the safety and comfort of bike drivers has made inefficient bike roads. Also, the accidents related to bikes have increased rapidly. This study proposes the proper types of the bike roads considering land use and bike driver characteristics. The elements classifying the bike driver characteristics are driven through oneway ANOVA and cluster analysis. It is found that the types of the bike roads can be classified by the ratio of child and elderly bikers and the ratio of heavy trucks. Also, the each type is characterized by the land use types such ad residential, commercial and industrial areas through cluster analysis. According to the results of the cluster analysis, installation of bike roads in residential area needs to consider convenience and safety simultaneously. It is also found that convenience should be the most considerable factor in commercial area. Lastly, safety should be considered in industrial area. Recommended methodology and bike road type based on the land use and bike driver's characteristics can be useful to develop bike-friendly environments and increase mode share of bikes.

A Meta-analysis on the Association between Chronic Noise Exposure and Blood Pressure (만성적 소음노출과 혈압의 상관성에 관한 메타분석)

  • Kim, Chun-Bae;Kim, Jai-Young;Cha, Bong-Suk;Choi, Hong-Ryul;Lee, Jong-Tae;Nam, Chung-Mo;Lee, Sang-Yun;Wang, Seung-Jun;Park, Kee-Ho;Kim, Dae-Youl;Koh, Sang-Baek
    • Journal of Preventive Medicine and Public Health
    • /
    • v.33 no.3
    • /
    • pp.343-348
    • /
    • 2000
  • Objectives : This study was conducted to integrate the results of studies assessing the association between chronic noise exposure and blood pressure. Methods : Using a MEDLINE search with noise exposure, blood pressure and hypertension as key words, we retrieved articles from the literature that were published from 1980 to December 1999. The criteria for quality evaluation were as follows: 1) the study subjects must have been workers employed at a high noise level area 2) The paper should use average and cumulative noise exposure as method for exposure evaluation. 3) Blood pressure in each article should be reported in a continuous scale Among the 77 retrieved articles, six studies were selected for quantitative meta-analysis. Before the integration of the regression coefficients for the association between blood pressure and noise level, homogeneity tests were conducted. Results : All studies were a cross-sectional design and the study subjects were industrial workers. Five papers used a time-weighted average for noise exposure and only one paper calculated the cumulative noise exposure level. The measurement of blood pressure in the majority of studios were accomplished in a resting stale, and used an average of two or more readings. The homogeneity of studies was rejected in a fixed effect model, so we used the results in a random effect model. The results of the quantitative meta-analysis, the weighted regression coefficient of noise associated with systolic blood pressure and diastolic blood pressure were 0.05 (95% confidence interval [CI]: -0.03, 0.13) and 0.06 (95% CI: -0.01, 0.13), respectively. Conclusions : Our results suggested that chronic exposure to industrial noise does not cause elevated blood pressure.

  • PDF

Safety Evaluation on Real Time Operating Systems for Safety-Critical Systems (안전필수(Safety-Critical) 시스템의 실시간 운영체제에 대한 안전성 평가)

  • Kang, Young-Doo;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3885-3892
    • /
    • 2010
  • Safety-Critical systems, such as Plant Protection Systems in nuclear power plant, plays a key role that the facilities can be operated without undue risk to the health and safety of public and environment, and those systems shall be designed, fabricated, installed, and tested to quality standards commensurate with the importance of the functions to be performed. Computer-based Instrumentation and Control Systems to perform the safety-critical function have Real Time Operating Systems to control and monitoring the sub-system and executing the application software. The safety-critical Real Time Operating Systems shall be designed, analyzed, tested and evaluated to have capability to maintain a high integrity and quality. However, local nuclear power plants have applied the real time operating systems on safety critical systems through Commercial Grade Item Dedication method, and this is the reason of lack of detailed methodology on assessing the safety of real time operating systems, expecially to the new developed one. This paper presents the methodology and experiences of safety evaluation on safety-critical Real Time Operating Systems based upon design requirements. This paper may useful to develop and evaluate the safety-critical Real Time Operating Systems in other industry to ensure the safety of public and environment.