DOI QR코드

DOI QR Code

Numerical Study on Performance of PEMFC with Block and Sub-channel of Cathode Flow Field

캐소드 유로에서 블록과 서브 채널의 고분자전해질 연료전지의 성능에 관한 전산해석 연구

  • Jo, Seonghun (School of Chemical Engineering, University of Ulsan) ;
  • Kim, Junbom (School of Chemical Engineering, University of Ulsan)
  • Received : 2021.09.16
  • Accepted : 2021.10.22
  • Published : 2021.12.10

Abstract

A flow channel shape of PEMFC has an influence on the internal flow uniformity. If the reactant distribution in a flow path is not uniform during operation, both catalyst deactivation and mechanical damage of membrane could occur resulting in decreasing the membrane electrode assembly (MEA) durability. Numerous studies concerning flow design have been conducted to make smooth supply and uniform distribution of reactants in fuel cells. The baffle of flow path could improve fuel cell performance through the forced convection effect. A sub-channel, as an additional air flow path, could increase the reactant concentration and reduce the mass transfer loss via a smooth water discharge. In this study, computational fluid dynamics (CFD) was used to analyze the effect of blocks and sub-channels on the current density and oxygen concentration of the fuel cell. As a result, the limit current density and oxygen concentration at a rear block increased when using blocks and sub-channels in a flow channel. In particular, the current density increased significantly when the sub-channel was placed between two blocks. Also, the sub-channel position was optimized by analyzing the oxygen concentration, and the oxygen concentration was recovered at a rear block in the fuel cell.

고분자전해질 연료전지의 유로 형상은 내부 유동의 균일성에 영향을 주는 변수이다. 유로 내에서 반응물 분포가 균일하지 않을 경우, 지속적인 운전 과정에서 촉매의 열화 및 고분자 막의 기계적 손상이 야기되며 연료전지의 내구 수명 저하로 이어진다. 연료전지에서 원활한 반응물 공급과 균일한 농도 분포를 위하여 유로 형상에 관한 연구들이 활발히 진행되고 있다. 유로의 배플은 유체의 강제 대류를 야기해 연료전지의 성능을 개선할 수 있고, 유로 중간에 새로운 반응물 공급 통로(서브 채널)를 만들어 반응물 농도 증가와 원활한 물 배출로 물질 전달 손실을 감소시킬 수 있다. 본 연구에서는 전산 유체 계산을 통하여 블록과 서브 채널을 적용한 유로가 연료전지의 전류밀도와 산소 농도에 미치는 영향을 분석하였다. 블록과 서브 채널이 유로에 구성되었을 때, 한계전류밀도가 증가하였고 블록 후단의 산소 농도가 회복되었다. 블록이 2개 이상 있을 때 블록 사이에 서브 채널을 배치할 경우 전류밀도 증가 폭이 더욱 커졌다. 또한 추가 공급되는 공기의 공급 위치에 따른 산소 농도를 분석하여 서브 채널이 블록 후단의 낮아진 산소 농도를 회복할 수 있었다.

Keywords

Acknowledgement

이 논문은 산업통상자원부가 지원한 '이전공공기관연계 육성사업'으로 지원을 받아 수행된 연구 결과입니다[과제명: 전지·ESS기반 에너지산업 혁신생태계 구축사업(P0002068)].

References

  1. R. O'Hayre, S. W. Cha, W. Colella, and F. B. Prinz, Fuel Cell Fundamentals, 3rd ed., 275-277, Wiley, NJ, USA (2016).
  2. J. Wang, H. Wang, Flow-field designs of bipolar plates in PEM fuel cells: Theory and applications, Fuel Cells, 12, 989-1003 (2012). https://doi.org/10.1002/fuce.201200074
  3. X. Li and I. Sabir, Review of bipolar plates in PEM fuel cells: Flow-field designs, Int. J. Hydrogen Energy, 30, 359-371 (2005). https://doi.org/10.1016/j.ijhydene.2004.09.019
  4. J. Wu, X. Z. Yuan, J. J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, and W. Merida, A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies, J. Power Sources, 184, 104-119 (2008). https://doi.org/10.1016/j.jpowsour.2008.06.006
  5. M. Marappan, K. Palaniswamy, T. Velumani, B. C. Kim, R. Velayutham, P. Shivakumar, and S. Sundaram, Performance studies of proton exchange membrane fuel cells with different flow field designs-review, Chem. Rec., 21, 663-714 (2021). https://doi.org/10.1002/tcr.202000138
  6. H. Li, Y. Tang, Z. Wang, Z. Shi, S. Wu, D. Song, J. Zhang, K. Fatih, J. Zhang, H. Wang, Z. Liu, R. Abouatallah, and A. Mazza, A review of water flooding issues in the proton exchange membrane fuel cell. J. Power Sources, 178, 103-117 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.068
  7. A. P. Manso, F. F. Marzo, J. Barranco, X. Garikano, M. G. Mujika, Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review. Int. J. Hydrogen Energy, 37, 15256-15287 (2012). https://doi.org/10.1016/j.ijhydene.2012.07.076
  8. A. Kazim, H. T. Liu, and P. Forges, Modelling of performance of PEM fuel cells with conventional and interdigitated flow fields, J. Appl. Electrochem., 29, 1409-1416 (1999). https://doi.org/10.1023/A:1003867012551
  9. M. Sauermoser, N. Kizilova, B. G. Pollet, and S. Kjelstrup, Flow field patterns for proton exchange membrane fuel cells, Front. Energy Res., 8:13 (2020). https://doi.org/10.3389/fenrg.2020.00013
  10. H. Heidary and M. J. Kermani, Performance enhancement of fuel cells using bipolar plate duct indentations, Int. J. Hydrogen Energy, 38, 5485-5496 (2013). https://doi.org/10.1016/j.ijhydene.2012.10.020
  11. S. H. Han. N. H. Choi, and Y. D. Choi, Simulation and experimental analysis on the performance of PEM fuel cell by wave-like surface design at the cathode channel, Int. J. Hydrogen Energy, 39, 2628-2638 (2014). https://doi.org/10.1016/j.ijhydene.2013.08.063
  12. M. Rahimi-Esbo, A. A. Ranjbar, A. Ramiar, E. Alizadeh, and M. Aghaee, Improving PEMfuel cell performance and effective water removal by using novel gas flow field, Int. J. Hydrogen Energy, 41, 3023-3037 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.001
  13. E. Alizadeh, M. Rahimi-Ebso, S. M. Rahgoshay, S. H. M. Saadat, and M. Khorshidian, Numerical and experimental investigation of cascade type serpentine flow field of reactant gases for improving performance of PEM fuel cell, Int. J. Hydrogen Energy, 42, 14708-14724 (2017). https://doi.org/10.1016/j.ijhydene.2017.04.212
  14. M. Ghasabehi, M. Ashrafi, and M. Shams, Performance analysis of an innovative parallel flow field design of proton exchange membrane fuel cells using Multiphysics simulation, Fuel, 285, 119194 (2021). https://doi.org/10.1016/j.fuel.2020.119194
  15. A. Azarafza, M. S. Ismail, M. Rezakazemi, and M. Pourkashanian, Comparative study of conventional and unconventional designs of cathode flow fields in PEM fuel cell, Renew. Sustain. Energy Rev., 116, 109420 (2019). https://doi.org/10.1016/j.rser.2019.109420
  16. S. A. Atyabi and E. Afshari, Three-dimensional multiphase model of proton exchange membrane fuel cell with honeycomb flow field at the cathode side, J. Clean. Prod., 214, 738-748 (2019). https://doi.org/10.1016/j.jclepro.2018.12.293
  17. P. Wawdee, S. Limtrakul, T. Vatanatham, and M. W. Fowler, Water transport in a PEM fuel cell with slanted channel flow field plates, Int. J. Hydrogen Energy, 40, 3739-3748 (2015). https://doi.org/10.1016/j.ijhydene.2015.01.037
  18. Y. Yin, X. Wang, X. Shangguan, J. Zhang, and Y. Qin, Numerical investigation on the characteristics of mass transport and performance of PEMFC with baffle plates installed in the flow channel, Int. J. Hydrogen Energy, 43, 8048-8062 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.037
  19. C. Y. Soong, W. M. Yan, C. Y. Tseng, H. C. Liu, F. Chen, and H. S. Chu, Analysis of reactant gas transport in a PEM fuel cell with partially blocked fuel flow channels, J. Power Sources, 143, 36-47 (2005). https://doi.org/10.1016/j.jpowsour.2004.11.055