• Title/Summary/Keyword: Industrial Convergence Type

Search Result 318, Processing Time 0.023 seconds

Exploration of Teacher's Perception and Educational Meaning of Middle School Physical Education Class Using Role-Playing Game (RPG) Format from the Constructivist Perspective (구성주의 관점에서 롤플레잉게임(RPG) 형식을 활용한 중학교 체육수업의 교사 인식과 교육적 의미 탐색)

  • Seung-Yong Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.10
    • /
    • pp.47-56
    • /
    • 2023
  • The purpose of this study was to explore educational awareness and meaning by applying an role-playing game (RPG) type class based on constructivism in physical education class in middle school. Regarding the research method, data collection was conducted through in-depth interviews, observations, and related documents, and data analysis was performed using case record analysis, inductive category analysis method, and case extraction process. Results of the study First, in terms of teachers' perceptions, there are both positive and negative aspects of teachers' perceptions of middle school physical education classes using the role-playing game (RPG) format. Second, in terms of educational meaning, the educational meaning of middle school physical education classes using the role-playing game (RPG) format emphasizes the need for a systematic lesson plan and sufficient support system. In conclusion, positive attitudes toward physical education as well as educational implications can be formed, and the basic foundation of the constructivist physical education class method and its preparation are thought to be of greater significance than anything else.

Analysis of the Effect of Farmers' Use of Information Devices on the Sales of Agricultural Products (농가의 정보화 기기 활용이 농산물 판매에 미치는 효과 분석)

  • Seong-Hyuk Hwang;Jongin Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.9
    • /
    • pp.133-142
    • /
    • 2023
  • The use of digital information technology has become important in order to effectively respond to changes in production conditions in Korean agriculture, which are continuously worsening due to a decrease in the rural population, deepening aging, and climate change. Accordingly, this study analyzed the factors affecting farmers' adoption of information devices use and the effect of information devices use on agricultural product sales using the propensity score matching method. As a result of the analysis, it was found that low-age farmers, high-education farmers, and leading farmers are highly likely to adopt use of information devices. For farms with similar characteristics such as age, management size, and farming type, it has been confirmed that farms that have adopted information devices use in agricultural management have higher sales of agricultural products. Therefore, increasing farmers' access to information and the ability to use information devices provides implications that farm income can be improved. The government's informatization support project in the agricultural and rural sectors is important so that farmers can have the ability to distribute informatization devices and utilize agricultural information, and active investment should also be made in information infrastructure.

Research on the Design of a Deep Learning-Based Automatic Web Page Generation System

  • Jung-Hwan Kim;Young-beom Ko;Jihoon Choi;Hanjin Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.21-30
    • /
    • 2024
  • This research aims to design a system capable of generating real web pages based on deep learning and big data, in three stages. First, a classification system was established based on the industry type and functionality of e-commerce websites. Second, the types of components of web pages were systematically categorized. Third, the entire web page auto-generation system, applicable for deep learning, was designed. By re-engineering the deep learning model, which was trained with actual industrial data, to analyze and automatically generate existing websites, a directly usable solution for the field was proposed. This research is expected to contribute technically and policy-wise to the field of generative AI-based complete website creation and industrial sectors.

Effect of Critical Cooling Rate on the Formation of Intermetallic Phase During Rapid Solidification of FeNbHfBPC Alloy

  • Kim, Song-Yi;Oh, Hye-Ryeong;Lee, A-Young;Jang, Haneul;Lee, Seok-Jae;Kim, Hwi-Jun;Lee, Min-Ha
    • Journal of Korea Foundry Society
    • /
    • v.41 no.3
    • /
    • pp.235-240
    • /
    • 2021
  • We present the effect of the critical cooling rate during rapid solidification on the nucleation of precipitates in an Fe75B13P5Nb2Hf1C4 (at.%) alloy. The thermophysical properties of the rapidly solidified Fe75B13P5Nb2Hf1C4 liquids, which were obtained at various cooling rates with various sizes of gas-atomized powder during a high-pressure inert gas-atomization process, were evaluated. The cooling rate of the small-particle powder (≤20 ㎛) was 8.4×105 K/s, which was 13.5 times faster than that of the large-particle powder (20 to 45 mm; 6.2×104 K/s) under an atomized temperature. A thermodynamic calculation model used to predict the nucleation of the precipitates was confirmed by the microstructural observation of MC-type carbide in the Fe75B13P5Nb2Hf1C4 alloy. The primary carbide phase was only formed in the large-particle gas-atomized powder obtained during solidification at a slow cooling rate compared to that of the small-particle powder.

An Empirical Study of Implementation and Application of Mold Life Cycle Management Information System In the Cloud Computing Environment (클라우드 컴퓨팅 환경에서 금형 수명주기관리 정보시스템 구축 및 적용의 실증적 연구)

  • Koh, Joon-Cheol;Nam, Seung-Done;Kim, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.331-341
    • /
    • 2014
  • Internet of Thing(IoT), which is recently talked about with the development of information and communication technology, provides big data to all nodes such as companies and homes, means of transportation etc. by connecting all things with all people through the integrated global network and connecting all actual aspects of economic and social life with Internet of Thing through sensor and software. Defining Internet of Thing, it plays the role of a connector of providing various information required for the decision-making of companies in the cloud computing environment for the Insight usage by collecting and storing Raw Data of the production site through the sensor network and extracting big data in which data is accumulated and Insight through this. In addition, as the industry showing the largest linkage with other root industries among root industries, the mold industry is the core technology for controlling the quality and performance of the final product and realizing the commercialization of new industry such as new growth power industry etc. Recently, awareness on the mold industry is changing from the structure of being labor-intensive, relying on the experience of production workers and repeating modification without the concept of cost to technology-intensive, digitization, high intellectualization due to technology combination according to IT convergence. This study, therefore, is to provide a golden opportunity to increase the direct and indirect expected effects in poor management activities of small businesses by actually implementing and managing the entire process of mold life cycle to information system from mold planning to mass production and preservation by building SME(small and medium-sized enterprises)-type mold life cycle management information system in the cloud computing environment and applying it to the production site.

3-Step Security Vulnerability Risk Scoring considering CVE Trends (CVE 동향을 반영한 3-Step 보안 취약점 위험도 스코어링)

  • Jihye, Lim;Jaewoo, Lee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.87-96
    • /
    • 2023
  • As the number of security vulnerabilities increases yearly, security threats continue to occur, and the vulnerability risk is also important. We devise a security threat score calculation reflecting trends to determine the risk of security vulnerabilities. The three stages considered key elements such as attack type, supplier, vulnerability trend, and current attack methods and techniques. First, it reflects the results of checking the relevance of the attack type, supplier, and CVE. Secondly, it considers the characteristics of the topic group and CVE identified through the LDA algorithm by the Jaccard similarity technique. Third, the latest version of the MITER ATT&CK framework attack method, technology trend, and relevance between CVE are considered. We used the data within overseas sites provide reliable security information to review the usability of the proposed final formula CTRS. The scoring formula makes it possible to fast patch and respond to related information by identifying vulnerabilities with high relevance and risk only with some particular phrase.

Development of Secondary Battery Module Cooling System Technology for Fast Charging (고속 충전을 위한 이차전지모듈 냉각시스템 기술 개발)

  • Kang, Seok Jun;Kim, Miju;Sung, Donggil;Oh, Miyoung;Bae, Joonsoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Because high power with large size cell is used for the battery pack of hybrid electric vehicles and electric vehicles (HEV and EV), average temperature in a battery cell is the important criteria of the thermal management of the battery pack. Furthermore, fast charging technology is required to reduce battery charging time. Since battery pack performance and lifespan are deteriorated due to the heat of cells and electronic components caused by fast charging, an effective cooling system is required to reduce performance deterioration. In this study, a cooling system and module design applied to a pouch-type for fast charging battery cell are investigated, and the cooling performance that can maximize the efficiency of the battery was analyzed. The result shows that the vapor chamber cooling system has better cooling performance, the temperature drop in the module was 5.82 ℃ compared with aluminum cooling plates.

A Study on the Intelligent Recognition of a Various Electronic Components and Alignment Method with Vision (지능적인 이형부품 인식과 비전 정렬 방법에 관한 연구)

  • Gyunseob Shin;Jongwon Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.1-5
    • /
    • 2024
  • In the electronics industry, a lot of research and development is being conducted on electronic component supply, component alignment and insertion, and automation of soldering on the back side of the PCB for automatic PCB assembly. Additionally, as the use of electronic components increases in the automotive component field, there is a growing need to automate the alignment and insertion of components with leads such as transistors, coils, and fuses on PCB. In response to these demands, the types of PCB and parts used have been more various, and as this industrial trend, the quantity and placement of automation equipment that supplies, aligns, inserts, and solders components has become important in PCB manufacturing plants. It is also necessary to reduce the pre-setting time before using each automation equipment. In this study, we propose a method in which a vision system recognizes the type of component and simultaneously corrects alignment errors during the process of aligning and inserting various types of electronic components. The proposed method is effective in manufacturing various types of PCBs by minimizing the amount of automatic equipment inserted after alignment with the component supply device and omitting the preset process depending on the type of component supplied. Also the advantage of the proposed method is that the structure of the existing automatic insertion machine can be easily modified and utilized without major changes.

  • PDF

A Study on the Growth Process and Cases Type of Smart Farm - Focused on the Case of Korea and Japan - (스마트팜의 발전과정과 유형별 사례 조사 - 한국과 일본의 사례를 중심으로 -)

  • Nam, Yun-Cheol
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.26 no.2
    • /
    • pp.37-46
    • /
    • 2024
  • The city is developing into a smart city. Smart villages and smart farms are developing in rural areas. Architectural technology needs synergy with smart cities, smart villages, and smart factories (intelligent factories) to help architectural experts understand smart farms and build facilities and equipment. Smart farms require design and construction technology with architectural structure and function. The purpose of this study was to investigate the current status and cases of smart farms in Korea and to investigate cases abroad. The conclusion is as follows. ① Smart farms are developing rapidly. The Korean government is expanding smart farms by utilizing ICT technology and infrastructure. ② 'Smart Farm Innovation Valley', which has been promoted since 2018, is a cutting-edge convergence cluster industrial complex that integrates production, education, and research functions such as start-ups and technological innovation. ③ In domestic cases, smart farms are operated in subway stations, buildings, supermarkets, and restaurants. ④ In the Japanese case, a dome-type smart farm was being operated. It utilized factory wastewater, waste heat, renewable energy, and used new materials. Otemachi Ranch raised livestock and provided a lounge on the 13th floor of the building. ⑤ In the cases of Korea and Japan, the smart farm technology is very similar. As stated earlier, since the food culture and agricultural technology of both countries are similar, we hope to promote the development of smart farms that can reduce concerns about future food by communicating and sharing mutual technologies.

Visualization of Structural Shape Information based on Octree using Terrestrial Laser Scanning (3D레이저스캐닝을 이용한 옥트리기반 구조물 형상정보 가시화)

  • Cha, Gichun;Lee, Donghwan;Park, Seunghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.8-16
    • /
    • 2016
  • This study presents the visualization of shape information based on Octree using 3D laser scanning. The process of visualization was established to construct the Octree structure from the 3D scan data. The scan data was converted to a 2D surface through the mesh technique and the surface was then converted to a 3D object through the Raster/Vector transformation. The 3D object was transmitted to the Octree Root Node and The shape information was constructed by the recursive partitioning of the Octree Root Node. The test-bed was selected as the steel bridge structure in Sungkyunkwan University. The shape information based on Octree was condensed into 89.3%. In addition, the Octree compressibility was confirmed to compare the shape information of the office building, a computer science campus in Germany and a New College in USA. The basis is created by the visualization of shape information for double-deck tunnel and it will be expected to improve the efficiency of structural health monitoring and maintenance.