• Title/Summary/Keyword: Inductive learning

Search Result 122, Processing Time 0.021 seconds

The Study On the Effectiveness of Information Retrieval in the Vector Space Model and the Neural Network Inductive Learning Model

  • Kim, Seong-Hee
    • The Journal of Information Technology and Database
    • /
    • v.3 no.2
    • /
    • pp.75-96
    • /
    • 1996
  • This study is intended to compare the effectiveness of the neural network inductive learning model with a vector space model in information retrieval. As a result, searches responding to incomplete queries in the neural network inductive learning model produced a higher precision and recall as compared with searches responding to complete queries in the vector space model. The results show that the hybrid methodology of integrating an inductive learning technique with the neural network model can help solve information retrieval problems that are the results of inconsistent indexing and incomplete queries--problems that have plagued information retrieval effectiveness.

  • PDF

A comparative study of deductive and inductive teaching and learning methods for EPL education (EPL 교육에서 연역적 및 귀납적 교수·학습방법 비교연구)

  • Park, Jaeyeon;Ma, Daisung
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.5
    • /
    • pp.575-583
    • /
    • 2018
  • This study approached EPL learning with deductive teaching and learning methods and inductive teaching and learning methods which are grammar teaching and learning methods. In the entry site, lectures provided for elementary school students in grades 5 to 6 were set as deductive learning courses. Based on this, inductive learning process was developed and each learning process was composed of 12 periods. After conducting the research, EPL utilization evaluation, learning satisfaction and immersion test were conducted between the two groups. It was difficult to obtain statistically meaningful results between the two groups. However, in the three tests, the mean value of groups using inductive teaching and learning methods was high. If we construct a long-term learning process and conduct research, we think that statistically meaningful results are produced between the two groups.

INCREMENTAL INDUCTIVE LEARNING ALGORITHM IN THE FRAMEWORK OF ROUGH SET THEORY AND ITS APPLICATION

  • Bang, Won-Chul;Bien, Zeung-Nam
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.308-313
    • /
    • 1998
  • In this paper we will discuss a type of inductive learning called learning from examples, whose task is to induce general description of concepts from specific instances of these concepts. In many real life situations, however, new instances can be added to the set of instances. It is first proposed within the framework of rough set theory, for such cases, an algorithm to find minimal set of rules for decision tables without recalculation for overcall set of instances. The method of learning presented here is base don a rough set concept proposed by Pawlak[2][11]. It is shown an algorithm to find minimal set of rules using reduct change theorems giving criteria for minimum recalculation with an illustrative example. Finally, the proposed learning algorithm is applied to fuzzy system to learn sampled I/O data.

  • PDF

Inductive Learning Algorithm using Rough Set Theory (Rough Set 이론을 이용한 연역학습 알고리즘)

  • 방원철;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.331-337
    • /
    • 1997
  • In this paper we will discuss a type of inductive learning called learning from examples, whose task is to induce general descriptions of concepts from specific instances of these concepts. In many real life situations however new instances can be added to the set of instances. It is first proposed within the framework of rough set theory, for such cases, an algorithm to find minimal set of rules for decision tables without recalculation for overall set of instances. The method of learning presented here is based on a rough set concept proposed by Pawlak[2]. It is shown an algorithm to fund minimal set of rules using reduct change theorems giving criteria for minimum recalculation and an illustrative example.

  • PDF

Inductive Learning using Theory-Refinement Knowledge-Based Artificial Neural Network (이론정련 지식기반인공신경망을 이용한 귀납적 학습)

  • 심동희
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.3
    • /
    • pp.280-285
    • /
    • 2001
  • Since KBANN (knowledge-based artificial neural network) combing the inductive learning algorithm and the analytical learning algorithm was proposed, several methods such as TopGen, TR-KBANN, THRE-KBANN which modify KBANN have been proposed. But these methods can be applied when there is a domain theory. The algorithm representing the problem into KBANN based on only the instances without domain theory is proposed in this paper. Domain theory represented into KBANN can be refined by THRE-KBANN. The performance of this algorithm is more efficient than the C4.5 in the experiment for some problem domains of inductive learning.

  • PDF

Integrating Multiple Classifiers in a GA-based Inductive Learning Environment (유전 알고리즘 기반 귀납적 학습 환경에서 분류기의 통합)

  • Kim, Yeong-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.614-621
    • /
    • 2006
  • We have implemented a multiclassifier learning approach in a GA-based inductive learning environment that learns classification rules that are similar to rules used in PROSPECTOR. In the multiclassifier learning approach, a classification system is constructed with several classifiers that are obtained by running a GA-based learning system several times to improve the overall performance of a classification system. To implement the multiclassifier learning approach, we need a decision-making scheme that can draw a decision using multiple classifiers. In this paper, we introduce two decision-making schemes: one is based on combining posterior odds given by classifiers to each class and the other one is a voting scheme based on ranking assigned to each class by classifiers. We also present empirical results that evaluate the effect of the multiclassifier learning approach on the GA-based inductive teaming environment.

Fuzzy Inductive Learning System for Learning Preference of the User's Behavior Pattern (사용자 행동 패턴 선호도 학습을 위한 퍼지 귀납 학습 시스템)

  • Lee Hyong-Euk;Kim Yong-Hwi;Park Kwang-Hyun;Kim Yong-Su;June Jin-Woo;Cho Joonmyun;Kim MinGyoung;Bien Z. Zenn
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.805-812
    • /
    • 2005
  • Smart home is one of the ubiquitous environment platforms with various complex sensor-and-control network. In this paper, a now learning methodology for learning user's behavior preference pattern is proposed in the sense of reductive user's cognitive load to access complex interfaces and providing personalized services. We propose a fuzzy inductive learning methodology based on life-long learning paradigm for knowledge discovery, which tries to construct efficient fuzzy partition for each input space and to extract fuzzy association rules from the numerical data pattern.

Adaptive Strategy Game Engine Using Non-monotonic Reasoning and Inductive Machine Learning (비단조 추론과 귀납적 기계학습 기반 적응형 전략 게임 엔진)

  • Kim, Je-Min;Park, Young-Tack
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.83-90
    • /
    • 2004
  • Strategic games are missing special qualities of genre these days. Game engines neither reason about behaviors of computer objects nor have learning ability that can prepare countermeasure in variously command user's strategy. This paper suggests a strategic game engine that applies non-monotonic reasoning and inductive machine learning. The engine emphasizes three components -“user behavior monitor”to abstract user's objects behavior,“learning engine”to learn user's strategy,“behavior display handler”to reflect abstracted behavior of computer objects on game. Especially, this paper proposes two layered-structure to apply non-monotonic reasoning and inductive learning to make behaviors of computer objects that learns strategy behaviors of user objects exactly, and corresponds in user's objects. The engine decides actions and strategies of computer objects with created information through inductive learning. Main contribution of this paper is that computer objects command excellent strategies and reveal differentiation with behavior of existing computer objects to apply non-monotonic reasoning and inductive machine learning.

A Meta-learning Approach that Learns the Bias of a Classifier

  • 김영준;홍철의;김윤호
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.2
    • /
    • pp.83-91
    • /
    • 1997
  • DELVAUX is an inductive learning environment that learns Bayesian classification rules from a set o examples. In DELVAUX, a genetic a, pp.oach is employed to learn the best rule-set, in which a population consists of rule-sets and rule-sets generate offspring by exchanging some of their rules. We have explored a meta-learning a, pp.oach in the DELVAUX learning environment to improve the classification performance of the DELVAUX system. The meta-learning a, pp.oach learns the bias of a classifier so that it can evaluate the prediction made by the classifier for a given example and thereby improve the overall performance of a classifier system. The paper discusses the meta-learning a, pp.oach in details and presents some empirical results that show the improvement we can achieve with the meta-learning a, pp.oach.

  • PDF