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In this paper we will discuss a type of inductive learning called learning from examples, whose task is to
induce general descriptions of concepts from specific instances of these concepts. In many real life situations,
however, new instances can be added to the set of instances. It is first proposed within the framework of rough
set theory, for such cases, an algorithm to find minimal set of rules for decision tables without recalculation
for overall set of instances. The method of learning presented here is based on a rough set concept proposed
by Pawlak[2][11]. It is shown an algorithm to find minimal set of rules using reduct change theorems giving
criteria for minimum recalculation with an illustrative example. Finally, the proposed learning algorithm is

applied to fuzzy system to learn sampled 1/0 data.
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1. Introduction

The subject of machine learning has received
considerable attention in recent decades. Inductive
learning (learning from examples) is perhaps the
oldest and best-understood problem in artificial
intelligence[4]. Many existing expert systems were
built by manually encoding the knowledge of human
experts. Encoding processes as such can be very time
consuming as they require close collaboration
between computer professionals and experts of the
subjects domain. To design expert system in this way
is rather inefficient particularly because the same
tedious task has to be performed for each specialized
application. A better alternative of designing an
expert system would be to construct and inductive
algorithm that can, from a carefully chosen sample of
expert decisions, infer and refine decision rules
automatically independent of the subject of interest.
The papers [5]{6][7][10] describe some of the more
recent research efforts made in this area.

Quinlan[1] suggested an inductive algorithm based
on the statistical theory of information originally
proposed by Shannon. The entropy function is used as
a measure of uncertainty in the classification of
objects characterized by attributes and attribute values.
On the other hand. Pawlak[2] showed that the
principles of inductive learning can be formulated
precisely and in a unified way within the framework
of rough set theory.

The set of instances, which is used for training set
of learning, is usually constant and unchanged during
the learning process. In many real life situations
however this is not the case and new instances can be

added to the set of instances. Our main objective in
this paper is to find an algorithm for inductive
learning without any recalculation for overall
instances when a new instance is added within the
framework of rough set theory assuming that the
minimized decision rules for the original decision
table is already given.

In section 2, the preliminaries for rough set theory
are reviewed, especially for the previous algorithm
for minimizing of decision tables. In section 3,
inductive learning concept in view of rough set theory
is given. Based on this scheme, an algorithm for
learning from examples when a new instance is added
to the examples in section 4 and finally, fuzzy
learning system is introduced as an application.

2. Mathematical Preliminaries

In this section, in order to deal with decision tables
mathematically, mathematical backgrounds on rough
set theory and related definition are reviewed. In
addition, the existing minimization method of
decision table is followed up to catch an idea to lead
the proposed algorithm.

2.1 Formal Definitions and Semantics of Decision
Logic[8]

Decision tables can be defined in terms of
KR(Knowledge Representation)-systems as follows.
Let K = (U, A) be a KR-system and let C, D c A4 be
two subsets of attributes, called condition and
decision attributes respectively. KR-system with
distinguished condition and decision attributes will be
called a decision table and will be denoted
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7=(U.4,C.D), or in short CD-decision table.

Equivalence classes of the relations /ND(C) and
IND(D) will be called condition and decision classes,
respectively.

With every x € U we associate a function dy:4—V,
such that dy(a) = a(x). for every a € C v D; the
function d will be called a decision rule in 7, and x
will be referred as a label of the decision rule dy.

Expressions of the form (a, v), or in short ay.,
called atomic formula, are formulas of the
DIl(Decision Logic)-language for any ¢ € 4 and
velV,. If ¢ and ¢ are formulas of the DL-language,
then so are ~¢. (¢ v @). (¢ A @), (¢ = @), and (¢ = ¢).

Formulas are meant to be used as descriptions of
objects of the universe. Atomic formula (g, v) is
interpreted as a description of all objects having value
v for attribute «. Compound formulas are interpreted
in the usual way. In order to express this probiem
more exactly, we define Tarski’s style semantics of
the decision logic language.

An object x € U satisfies a formula ¢ in § = (U, 4),
denoted x = ¢ or in short x = ¢, if S is understood.

If ¢ is a formula the set |@s defined as follows

#s = {x e Ulx=5¢}

will be called the meaning of the formula ¢ in S.
Formula of the form

(@, vi) A @y v A A dg, V),

where v; € Vi, P = {a,, a,, ..., a,}, and P c A,
will be called a P-basic formula or in short P-
formula. A-basic formula will be called basic
formulas.

Any implication ¢ — ¢ will be called a decision
rule in the KR-language; ¢ and ¢ are referred to as the
predecessor and the successor of ¢ —¢ respectively.
If a decision rule ¢ — @ is true in S, it is said that the
decision rule is consistent in S. If ¢ — ¢ is a decision
rule and ¢ and ¢ are P-basic and P-basic formulas
respectively, then decision rule ¢ — ¢ will be called a
PQ-basic decision rule, (in short PQO-rule), or basic
rule when £°Q is known.

Any finite set of basic decision rules will be called
a basic decision algorithm. If all decision rules in a
basic decision algorithm are PQ-decision rules, then
the algorithm is said PQ-decision algorithm, or in
short PQ-algorithm. and will be denoted by (P, Q).
The PQ-algorithm is consistent in S. iff its decision
rules are consistent in S.

2.2 Minimization of Decision Tables

The approach to table minimization presented in
[8] consists of the following steps:
Step 1) Reduction of the Algorithm: Computation

of reduct of condition attributes which is equivalent to
elimination of some column from the decision table.
Step 2) Reduction of Decision Rules: Elimination
of superfluous values of attributes.
Step 3) Minimization of the Decision Algorithm:
Elimination of superfluous decision rules.
Now each step is introduced in detail one by one.
Let (P, Q) be a consistent algorithm and suppose
thatae Pand Rc P.

Step 1) Reduction of the Algorithm:

An attribute @ € P is called dispensable in the
algorithm (P, Q) if the algorithm (P-{a}, Q) is
consistent; otherwise a is indispensable in (P, Q).
The algorithm (P, Q) is called independent if all ac?
are indispensable in (P, Q). The subset of attributes
RcZP is called a reduct of the algorithm (P,0) if (R,Q)
is independent and consistent.

A basic decision algorithm is said to be reduced if
every rule in the algorithm is reduced.

Step 2) Reduction of Decision Rules

Let ¢ — @ be a PQ-rule.

An attribute a € P is called dispensable in the rule
b ¢ if = ¢ > ¢ implies = #(P-{a}) - ¢,
otherwise a is indispensable in ¢ — ¢. The PQ-rule
¢—>¢ is called independent if all aeP are
indispensable in ¢ — ¢. The subset of attributes R P
is called a reduct of the PO-rule ¢ — @ if /R — @ is
independent and =g ¢ — @ implies =g /R > @.

A decision rule ¢/R — ¢ is said to be reduced if R
is a reduct of the PQ-ruleg — ¢.

Step 3) Minimization of the Decision Algorithm

The set of all rules in 4 having the same successor
@ is denoted A, and P, is the set of all predecessors
of decision rules belonging to 4, A decision rule
¢—>¢@ in A is called dispensable in 4 if
=g VP,= {P,{¢}}. where vP, denotes disjunction of
all formulas in P,; otherwise ¢ — @ is indispensable
in 4. The set of rules A, is called independent if all
decision rules in A4, are indispensable in A, The
subset A7 of decision rules of A, is called a reduct of
A, if all decision rules in 4’ are independent and =;
vP,= P, . A set of decision rules A, is said to be
reduced if reduct of 4, is 4,, itself.

A basic algorithm 4 is said to be minimal if every
decision rule in 4 is reduced and for every decision
rule ¢ — @in A, A is reduced.

3. Inductive Learning
3.1 Learning from Examples
Assume that there are two agents: a “knower” and

a “learner”. Suppose that the knower has knowledge
about certain universe of discourse U, that is, he is
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able to classify elements of the universe U, and
classes of the knower’s classification from concepts to
be learned by the learner. Moreover, it is assumed that
the knower has complete knowledge about the
universe U and the universe U is closed that is
nothing else besides U exists. This assumption is
called the closed world assumption(CWA)[8].

Task of a learner is to learn knower’s knowledge.
Now the problem whether always the learner’s
knowledge can match the knower’s knowledge or
whether the knower’s knowledge (attributes) depends
on learner’s knowledge (attributes). As a consequence
the degree of dependency between the set of knower’s
and learner’s attribute, can be viewed as a numerical
measure of how exactly the knower’s knowledge can
be learned. To describe this concept, Pawlak[2]
defined the quality of learning as follows:

cardPOS ,(C)

k=ry(©)= cardU

which is the same quantity with the degree of
dependency. This number expresses what percentage
of knower’s knowledge can be learned by the learner.

3.2 Dynamic Learning

The learning under closed world assumption is
viewed as a static learning[2]. The classification rules
learned from training examples can be assumed as the
background knowledge of the learner. The question
arises whether the background knowledge can be used
to classify correctly new object not occurring in
training examples which occurs under open world
assumption{OWA)[8].

Classification of new objects based on background
knowledge previously acquired from training
examples is considered dynamic learning[2]. Pawlak
categorized the possibilities when a new instance is
added as follows:

1) the new instance confirms actual knowledge

2) the new instance contradicts actual knowledge

3) the new instance is completely new case.

If the training set is in a certain sense complete, i.e.,
the decision table is consistent if provides the highest
quality of learning and the learners knowledge cannot
be improved by means of new instances. If however
the training set is inconsistent, every new confirming
instance increases leamer’s knowledge and any new
borderline instance decreases his knowledge.

4. Proposed Algorithm
4.1 Refinement of Categorization for New Instances
Observing carefully the steps to minimize decision

tables in the previous section gives an idea to make an
update law of the minimized decision rules when a

new instance is added.

While Pawlak{2][8] considered three possibilities
when adding a new instance to the universe as
introduced in the last section, we propose four
possibilities. Before going ahead, it is required to
define several concepts.

Definition 1. Completely contradict: A new
instance x is said to be completely contradict if x
contradicts the given minimized decision rules and

there exists a y € U such that ¢y = ¢y, where x is ¢
—> grand yis ¢y — ¢y, |

Definition 2. Partially contradict: A new instance
x is said to be partially contradict if x contradicts the
given minimized decision rules and it doesn’t
completely contradict the given decision rules. |

Now we can suggest categorize the cases when a
new instance to the universe as follows:

1) the new instance confirms actual knowledge

2) the new instance completely contradicts actual
knowledge

3) the new instance partially contradicts actual
knowledge

4) the new instance is completely new case.

4.2 Criteria to Change Reducts

In this paper, we only consider the case when a
partially contradict instance is added to the universe.

The minimization method of decision tables find a
Q-reduct of P, and then find reducts for each rule, that
is, eliminate superfluous values of attributes, and
finally find a reduct for the generated rules in the
previous step, i.e., eliminate superfluous decision
rules.

Now assume that the minimized decision rules for
a decision table and all kinds of reduct corresponded
are given before a new instance is added. Likewise
the minimization steps, now when a new instance is
added, the proposed algorithm first checks if the Q-
reduct of P should be changed(step 1). If so, find
rules for which the reduct for each rule should be
updated and recalculate them(step 2). Finally,
eliminate superfluous decision rules for newly created
decision rules(step 3).

In order to check whether the Q-reduct of P should
be changed or not, we have a criterion to decide it.
The theorem 1{12] gives us such a criterion.

Theorem 1. Suppose S = (U, 4) is a KR-system
and a new instance x is added to U with a basic
decision rule ¢, — ¢, which partially contradicts the
acquired knowledge. Then the reduct of the PQ-basic
algorithm, RED(P, Q) changes if and only if there
exists ay € Usuch that y =¢ ¢/ RED(P, ). 1

In order to find the rule set which the reduct for
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each rule should be updated, we use the following.

Remark 1. Suppose S = (U, 4) is a KR-system and

a new instance x is added to U with a basic decision
rule 'y — (‘Dx which partially contradicts the acquired
knowledge. Then, we intuitively insist that, for each i
e U’ (= U uix}), the reduct of decision rule ¥; 5 @},
RED("y — 7x) does not changes if and only if
/RED(Y; > 9 =P RED®; 5 ) implies ®; 5 @

From the above consideration we can make a set of
label of which rules in the original minimized set of
rules is contradicted by x. Let us denote such a label
set be cy. The overall flowchart of proposed algorithm
is given in the figure 1.

New instance x with basic rule ¢ (_fpx

X is new or
completely x confirms
contradic .
Nothing End
Changed n
x 1s partially
contradict
Find
For < minimized
Step | rules for all
instances

‘For < I Find new RED(IP/_;p,) fori e c, I
Step 2

U Find new RED(T,—57) |
p
Reduce the set of rules for each class
For ) of ¢,
Step 3 v
J Reduce A(p,

Fig. 1. Proposed inductive learning algorithm
when a new instance is added

4.3 An Hlusirative Example

Here is a KR-system S = (U, A) where U= {1, 2, 3,
4.5,6,7}, A=P U Q,P=1{a, b, c dj. and Q= {e}.
The decision table is given in the table 1.

Table 1. A decision table
U!a b ¢ d e
1|1

-0 O O
oo OO
—_ 0 O -

1
1 1
0 0
1 0

S W N

5010 2 2
612 2 0 2 2
712 2 2 2 2

The minimized decision rules and a Q-reduct of P
can be found from the steps in the previous section as
follows:

aby > e
dy —» €o
bldl ~> €0
g

and
RED(P, Q)= {a, b, d}.

Suppose a new instance x

Ula b ¢
xjo 1 2

D e
11

is added which partially contradicts the previously
acquired knowledge.

By the theorem 1, we can know RED(P, ) doesn’t
change sincenoy € Uand y =s "/ RED(P, ).

Moreover, the remark 1 yields the label set and
corresponding reduct for each rule:

cx = {3, 4}

REDC®3 > ®3) = {a, b}, la. d}
REDC 4 %)= {a, b, d)
RED(*; 5 %0) = {a, b}, {a, &}

For e,

3: aobo —» €9 Or aodo —» €
4: abicy —> eo,

we can choose
aobo —» ey, a1bico — €y (])
On the other hand, for A%, i.e., e,

1, 2: aby > e
X aghy — e, or ady — e,

we can choose
alb()»«)ehaobl—-)el (2)

Therefore the total minimized decision rules are

aobo —>» €

abicy — e } from (1)
@by — e

ab, — e } from (2)
dr-> e ... no change

which is identical to the result of recalculation for
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overall set of instances.
5.  An Application to Fuzzy Learning

One of the possible approaches to design a
controller for a very complex plant controlled by
human is to design a controller emulating the control
actions of the human by using sampled /O data from
the actions of the human. When there is no
mathematical model or the mathematical model is
strongly nonlinear, it is advantageous to design a
fuzzy controller.

Wang and Mendel[9] proposed a general method
to generate fuzzy rules by learning form examples. It
proved to be capable of approximating any real
continuous function on a compact set to arbitrary
accuracy. However, it does not determine the domain
intervals and the shape of each membership function,
which have a great effect on the performance of a
fuzzy system.

Proposed incremental inductive learning algorithm
can effectively deal with the large amount of I/O data.
However, there is a problem before it is applied to
fuzzy learning. It will be solved by the new concept
of indiscernibility between attribute values and then,
it will be explained how to generate fuzzy rules.

5.1 Clustering Attribute Values

When the attribute values are real, rough set
approach cannot consider whether one is bigger than
another. We hope that we can still classify although
the attribute values are real. In view of rough set
approach, an attribute value, say 4.8, doesn’t have any
meaning to another attribute value, say 5.2, just as an
attribute value ‘red’ doesn’t have it to another
attribute value ‘blue’. That is, the magnitude of
numbers cannot be considered. From the above
consideration, in order to cluster the attribute values
in the continuous domain, it is reasonable to minimize
the number of rules minimized by rough set technique
such that the new set of minimized rules with the new
attribute values does not conflict to the sampled 1/O
data pairs by clustering each set of attribute values for
all attributes and redefining each set of attribute
values with the clusters.

A new concept, indiscernibility between
attribute values is defined as follows, by which we
solve the above problem.

Definition 3. Indiscernibility between attribute
values: Suppose we have found a set of minimized
rules for a given decision table. For two rules with the
same consequent. say, ¢, — ¢ which ¢, — ¢. the two
attribute values v, and vg, of attribute a are called
indiscernible iff ¢, has v, ¢, has v, and all the other
attribute values between ¢, and ¢, are the same. 1

The above definition is intuitively understood and
reasonable to minimize the number of rules. For each
attribute, any two attribute values which are
indiscernible can be clustered.

5.2 Generating Fuzzy Rules

Once we find the minimal number of rules by
clustering the attribute values, we can assign
linguistic variables to every attribute and make their
term sets with clusters in each attribute.

The overall procedures can be summarized as
follows.

Step 1. Find the set of minimized rules for given
decision table.

Step 2. Divide the output space into fuzzy regions
to make fuzzy linguistic variable for output.

Step 3. Cluster the attribute values in the sense of
indiscernibility between attribute values.

Step 4. Divide the input space using clusters
acquired in step 3.

Step 5. Create a fuzzy rule base with the fuzzy term
sets.

With this procedure. we can make a fuzzy rule
base from the given sampled 1/O data. Next, the
proposed incremental inductive learning algorithm is
applied to this fuzzy learning system for online
control, diagnosis, etc.

6. Concluding Remarks

In this paper, it is shown a type of inductive
learning, whose task is to induce general descriptions
of concepts from specific instances of these concepts.

It is proposed, when a new instance is added to the
universe of discourse, an algorithm to find minimal
set of rules for decision tables without recalculation
for overall set of instances.

The main contribution of this paper is to provide
an algorithm of inductive learning for additive
instances to efficiently increase the total learned
knowledge within the framework of rough set theory
assuming that the minimized decision rules for the
original decision table is already given,

At last, it is shown that the proposed algorithm can
be applied to fuzzy learning system.

This paper still leaves several further works to
make the algorithm perfect for any kinds of new
instances.

The proposed algorithm does not consider the
cases when the new instance is completely new case
to the previously acquired knowledge and when it
completely contradicts the knowledge. An algorithm
to cope with these two cases would be acquired from
the mathematical analysis with semantics of decision
logic language.
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Appendix

Proof of theorem 1.

Suppose first there does not exist any y € U such
thaty =¢ ¢/R where R = RED(P, (). Then a new rule
x does not conflict to any previous rules in (R, Q).
Hence (R, Q) is consistent in the universe of discourse
after adding the new instance, denoted by U”.

By definition of RED(P, Q), RED(P, Q) is
indispensable in (R, () in U, that is, if any attribute in
R is removed then (R, Q) becomes inconsistent in U.
This is naturally true whether a new rule x is added to
L' or not.

Hence, RED(P, Q) is indispensable in (R, ) in U’
and thus RED(P, Q) is still a reduct in U”.

For reverse implication, let a rule z in the
minimized rule set which conflicts to the new rule x.
Then,

“sfr > prand g £ @y (A1)
where x =g ¢y > @y andz=5 ¢, > ¢ 5
Since ¢-/R = ¢,

=g ¢/R > #-/R (A-2)

By assumption, there exists a y € U such that

y=s $/R, i.e., §/R= ¢e/R (A3)
(A.2) and (A.3) yields
=5 $/R —> ¢/R (A4)

And, since y and z are consistent in (R, Q) if =¢
#/R — ¢-/R then ¢, = ¢,. This and (A.4) yields

by =4 (A5)
From (A.1) and (A.5),
Py * ¢x (A.6)

In result, from (A.3) and (A.6),

/R — ¢y/Rand ¢, = ¢

Because the new rule x conflicts to y in (R, Q) in U,
which implies that R = RED(P, () cannot be a reduct
of (P, Q) in UJ’, the proof is complete. [ |
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