• Title/Summary/Keyword: Induction current

Search Result 1,584, Processing Time 0.029 seconds

Lossless Inductor Snubber-Assisted ZCS-PFM High Frequency Series Resonant Inverter for Eddy Current-Heated Roller

  • Feng Y. L.;Ishitobi M.;Okuno A.;Nakaoka M.;Lee H. W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.304-308
    • /
    • 2001
  • This paper presents a novel prototype of ZCS-PFM high frequency series resonant inverter using IGBT power module for electromagnetic induction eddy current-heated roller in copy and printing machines. The operating principle and unique features of this voltage source half bridge inverter with two additional soft commutation inductor snubber are presented including the transformer modeling of induction heated rolling drum. This soft switching inverter can achieve stable zero current soft commutation under a discontinuous and continuous resonant load current for a widely specified power regulation processing. The experimental results and computer-aided analysis of this inverter are discussed from a practical point of view.

  • PDF

Optimum design on the commutation circuit of a current source inverter feeding on induction motor (유도전동기 구동을 위한 전류형 인버어터의 전류회로 최적설계에 관한 연구)

  • 노창주;홍순일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.250-256
    • /
    • 1985
  • With the advant of thryistors having large peak inverse voltages, current-source inverters are becoming very popular to feed induction motors. But it is very difficult to analysis the commutation. Since the actual variation of current during commutation is neither instantaneous nor linear and is effected by many parameters. Minimized bias-time of reverse voltages during commutation is expressed in term of machine parameters, capacitor voltage, load current and so on. The minimized bias-time is computed with y and z and also the commuation mechanism is tested on 2.2 kw induction motor. The computed results are compared with the experimental results, and the results give a good information for designing the commutation mechanism.

  • PDF

Sensorless Speed Control of Induction Motor using Current Compensation

  • Oh, Sae-Gin;Kim, Jong-Su;Kim, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.503-510
    • /
    • 2003
  • A new method of induction motor drive, which requires neither shaft encoder nor speed estimator, is presented. The proposed scheme is based on decreasing current gap between a numerical model and an actual motor. By supplying the identical instantaneous voltage to both model and motor in the direction of reducing the current difference. the rotor approaches to the model speed. that is. reference value. The indirect field orientation algorithm is employed for tracking the model currents. The performance of induction motor drives without speed sensor is generally characteristic of poorness at very low speed. However, in this system, it is possible to obtain good speed response in the extreme low speed range.

A study on the speed control of ship propulsion induction motor using improved AFE rectifier

  • HUR, Jae-Jung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.1
    • /
    • pp.71-81
    • /
    • 2020
  • This paper proposes a possibility of using active front-end rectifier with the SVPWM method for induction motor speed control, which is applicable to small electric propulsion boats. The proposed method can produce a more precise sinusoidal input current waveform and a higher power factor than conventional methods. Its speed, torque, input current, DC voltage, and load current control performance are similar to or better than those of conventional methods. Through computer simulations using the PSIM program, the validity of the proposed method was verified by comparing and analyzing the characteristics of the conventional methods and the proposed method.

A Study on the Soft Starting Switch of Single Phase Condenser Induction Motor Using TRIAC (트라이액을 이용한 단상 유도전동기의 Soft Starting Switch에 관한 연구)

  • 강응석;신대철;최종문
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.97-103
    • /
    • 2004
  • In general the starting current of single phase induction motor is 3 to 6times of the rated current It make flickering an electric lamp, dispersion a TV screen, insulation destructing an electric motor and momentary blazing of house wiring. Thus it happens losing an electric power loss and reducing an efficiency and a life of home electrical apparatus. In this paper, we proposed the method of reducing staring current with 3.7(%) using TRIAC and ACCT(alternated current transformer) in order to improve the above problem And also we verified semipermanent system with using semiconductor element.

Rotor Fault Detection System for Inverter Driven Induction Motors using Currents Signals and an Encoder

  • Kim, Nam-Hun
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.271-277
    • /
    • 2007
  • In this paper, an induction motor rotor fault diagnosis system using current signals, which are measured using the axis-transformation method is presented. Inverter-fed motor drives, unlike line-driven motor drives, have stator currents which are rich in harmonics and therefore fault diagnosis using stator current is not trivial. The current signals for rotor fault diagnosis need precise and high resolution information, which means the diagnosis system demands additional hardware such as a low pass filter, high resolution ADC, an encoder and additional hardware. Therefore, the proposed axis-transformation method is expected to contribute to a low cost fault diagnosis system in inverter-fed motor drives without the need for any additional hardware. In order to confirm the validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation, using the Park transformation, is compared with the results obtained from the FFT(Fast Fourier Transform).

Low Cost Rotor Fault Detection System for Inverter Driven Induction Motor

  • Kim, Nam-Hun;Choi, Chang-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.500-504
    • /
    • 2007
  • In this paper, the induction motor rotor fault diagnosis system using current signals, which are measured using axis-transformation method, and speed, which is estimated using current information, are presented. In inverter-fed motor drives unlike line-driven motor drives the stator currents have numerous harmonics components and therefore fault diagnosis using stator currents is very difficult. The current and speed signal for rotor fault diagnosis needs to be precise. Also, high resolution information, which means the diagnosis system, demands additional hardware such as low pass filter, high resolution ADC, encoder and etc. Therefore, the proposed axis-transformation and speed estimation method are expected to contribute to low cost fault diagnosis systems in inverter-fed motor drives without the need for an encoder and any additional hardware. In order to confirm validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation using Park transformation and speed estimation method are compared with the results obtained from fast Fourier transforms.

Numerical Calculations and Analyses in Diagonal Type Magnetohydrodynamic Generator

  • Le, Chi Kien
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1365-1370
    • /
    • 2013
  • This paper examines the effects of magnetic induction attenuation on current distribution in the exit regions of the Faraday-type, non-equilibrium plasma Magnetohydrodynamic (MHD) generator by numerical calculation using cesium-seeded helium. Calculations show that reasonable magnetic induction attenuation creates a very uniform current distribution near the exit region of generator channel. Furthermore, it was determined that the current distribution in the middle part of generator is negligible, and the output electrodes can be used without large ballast resistors. In addition, the inside resistance of the exit region and the current concentration at the exit electrode edges, both decrease with the attenuation of magnetic flux density. The author illustrates that the exit electrodes of the diagonal Faraday-type, non-equilibrium plasma MHD generator should be arranged in the attenuation region of the magnetic induction, in order to improve the electrical parameters of the generator.

Design of Current Controller for an Induction Motor using Robust Stability Theory (강인안정도 기법을 이용한 유도전동기의 전류 제어기 설계)

  • 박태식;유지윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.165-172
    • /
    • 2003
  • In this paper, the new robust current control scheme is proposed for an Induction motor. The proposed design scheme of current controller tan obtain a specified stability margin through electrical parameter variation by using Kharitonov robust stability theory. The characteristics of the proposed design scheme are compared with those of a conventional scheme by computer simulation and its effectiveness and usefulness is verified by experiments on the 0.75kW induction motor drive.

Indirect Measurement of Torque of the Auto Screw Drive to using the Current Signals of DC Motor (DC 모터 전류 신호를 이용한 자동나사체결기 토크의 간접 측정)

  • 이정윤;이정우;이준호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.299-304
    • /
    • 2003
  • This paper proposes an algorithm to estimate the screw torque from parameters of induction motor and current of DC motor without strain gage and torque cell. The parameters of friction torque search for damping ratio and electromotive force constant use the motor torque and angula speed signals be generated in the induction motor, make use of oscilloscope and stroboscope for precise measured of experimental data, measured physical parameters through experimental. In addition the screw torque estimated use of measured current signals from induction moor. The results, theory and simulation recognized well coincidence.

  • PDF