• Title/Summary/Keyword: Induction Motors

Search Result 747, Processing Time 0.031 seconds

Improved transient performance of mechanical parking facilities through simultaneous PLC and inverter control (PLC와 인버터의 동시 제어를 통한 기계식 주차설비의 과도 상태 성능 향상)

  • Kim, Chang-Young;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.116-127
    • /
    • 2021
  • In this paper, we propose simultaneous control which improve in transient state performance of mechanical parking facilities through simultaneous control of PLC and inverter. In conventional mechanical parking facilities, it is controlled only by PLC, and it is more likely to generate over-currents in induction motors, and the ride comfort is reduced due to wear and damage caused by friction on the brake pads, and the life is shortened. To improve this problems the application of control techniques through simultaneous control of PLC and inverter prevents over-currents in induction motors, protects brake pads, improves ride comfort, increases control and ensures safety. We verify its validity by applying the proposed control method via simultaneous control of PLC and inverter to a mechanical parking facility.

Vector Analysis on the Quick Torque Control of Induction Motors (유도전동기의 토크 속응제어법에 관한 벡터적해석)

  • Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.4
    • /
    • pp.393-401
    • /
    • 1995
  • In this paper, vector analysis on the novel quick torque control of Induction Motors(I.M) based on voltage-controlled type is conducted. It was very difficult to get a step response of torque when the primary voltage was selected as control input of induction motors in conventional quick torque control methods. To solve this problem, the new control method was developed using a new concept of pulse addition which can realize the stepwise torque response of a specified settling time of $\Delta$. The new method was successfully confirmed through DSP(Digital Signal Processor) system-based experiments. However, it was a little difficult to understand the control mechanism intutionally. The purpose of this paper is to provide more understanding about the quick torque control mechanism using the vector analysis.

  • PDF

Adaptive Feedback Linearization Control Based on Airgap Flux Model for Induction Motors

  • Jeon Seok-Ho;Baang Dane;Choi Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.414-427
    • /
    • 2006
  • This paper presents an adaptive feedback linearization control scheme for induction motors with simultaneous variation of rotor and stator resistances. Two typical modeling techniques, rotor flux model and stator flux model, have been developed and successfully applied to the controller design and adaptive observer design, respectively. By using stator fluxes as states, over-parametrization in adaptive control can be prevented and control strategy can be developed without the need of nonlinear transformation. It also decrease the relative degree for the flux modulus by one, thereby, yielding, a simple control algorithm. However, when this method is used for flux observer, it cannot guarantee the convergence of flux. Similarly, the rotor flux model may be appropriate for observers, but it is not so for adaptive controllers. In addition, if these two existing methods are merged into overall adaptive control system, it brings about structural complexies. In this paper, we did not use these two modeling methods, and opted for the airgap flux model which takes on only the positive aspects of the existing rotor flux model and stator flux model and prevents structural complexity from occuring. Through theoretical analysis by using Lyapunov's direct method, simulations, and actual experiments, it is shown that stator and rotor resistances converge to their actual values, flux is well estimated, and torque and flux are controlled independently with the measurements of rotor speed, stator currents, and stator voltages. These results were achieved under the persistent excitation condition, which is shown to hold in the simulation.

A study on how to discriminate the polarities of stator windings for 3 phase induction motors by using induced voltages based on residual magnetism (잔류자기 유도 기전력을 이용한 3상유도전동기 권선의 극성 판별법에 관한 연구)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1146-1149
    • /
    • 2014
  • To discriminate polarities of stator windings for 3 phase induction motors terminal tags of which are not readable, it is possible to utilize the residual magnetic flux present at their rotors as well as to use the way based on external exciting current. The induced voltages are basically decided by parameters such as the quantity of residual flux, the rotator speed by hand force and the phase properties between stator windings. To adopt induced voltages by residual flux for polarity discrimination at sites, the measured voltages by multi-testers need to be readable in magnitude enough to discriminate winding condition with reasonable phase characteristics. This study focuses on the analysis of various connection cases in the expectation that the summing voltages induced by residual flux shall show zero in case of normal connections while the sum becomes greater indication if the connection is in wrong condition. The proposed method is applied to actual motors to disclose how effective it is for polarity discrimination at sites through comparison of output signals between normal and fault connections.

Rotordynamic Model Development with Consideration of Rotor Core Laminations for 2.2 kW-Class Squirrel-Cage Type Induction Motors and Influence Investigation of Bearing Clearance (2.2 kW급 유도전동기의 회전자 적층구조를 고려한 회전체 동역학 해석모델 개발 및 베어링 간극의 영향 분석)

  • Park, Jisu;Sim, Kyuho;Lee, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.158-168
    • /
    • 2019
  • This paper presents the investigation of two types of rotordynamic modeling issues for 2.2 kW-class, rated speed of 1,800 rpm, squirrel-cage type induction motors. These issues include the lamination structure of rotor cores, and the radial clearance of ball bearings that support the shaft of the motor. Firstly, we focus on identifying the effects of rotor core lamination on the rotordynamic analysis via a 2D prediction model. The influence of lamination is considered as the change in the elastic modulus of the rotor core, which is determined by a modification factor ranging from 0 to 1.0. The analysis results show that the unbalanced response of the rotor-bearing system significantly varies depending on the value of the modification factor. Through modal testing of the system, the modification factor of 0.079 is proven to be appropriate to consider the effects of lamination. Next, we investigate the influence of ball bearing clearance on the rotordynamic analysis by establishing a bearing analysis model based on Hertz's contact theory. The analysis results indicate that negative clearance greatly changes the bearing static behavior. Rotordynamic analysis using predicted bearing stiffness with various clearances from -0.005 mm to 0.010 mm reveals that variations in clearance result in a slight difference in the displacement of the system up to 18.18. Thus, considering lamination in rotordynamic analysis is necessary as it can cause serious analysis errors in unbalanced response. However, considering the effect of the bearing clearance is optional because of its relatively weak impact.

Propulsion Control of Railway Vehicle using Semiconductor Transformer and Switched Reluctance Motor (반도체 변압기 및 스위치드 릴럭턴스 전동기(SRM)를 적용한 철도차량 추진제어)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.127-132
    • /
    • 2022
  • Among the electrical components mounted on railroad cars, the largest load is the main transformer, which has a low power density of 0.2~0.4 MVA/ton due to the low operating frequency(60Hz), which is an important factor for weight reduction. Therefore, research on molded transformers, semiconductor transformers, etc. is being actively conducted at Domestic and foreign in order to improve the main transformer for railway vehicles. Meanwhile, attempts are being made to apply a permanent magnet synchronous motor (PMSM) to replace an induction motor as a traction motor that is mostly applied to domestic and foreign railway vehicles. Permanent magnet synchronous motors (PMSMs) can secure higher power density and efficiency compared to induction motors, but have disadvantages in that the materials required for manufacturing are expensive and design is somewhat difficult compared to induction motors. Considering these problems, in this paper, we suggest that a small and lightweight semiconductor transformer is applied, and a simple structure, high torque, low cost SRM can be applied in accordance with the requirements such as weight reduction and high efficiency of railroad vehicles. content.

Analysis of Aging Insulation Characteristics of 3.3[kV] Class Induction Motor with AC Breakdown Test (절연파괴시험법을 이용한 3.3[kV] 유도전동기의 절연물 열화특성 분석)

  • Lee, Ju;Kim, Hyun-Il;Kim, Youn-Hyun;Son, Yeoung-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.141-149
    • /
    • 2007
  • This paper introduce to improve the reliability of the expected service life and the insulation condition evaluation of the high voltage induction motors by assessing, comparing and analyzing the correlation between the dielectric properties of the off-line insulation diagnostic test and dielectric strength on the insulation breakdown test. The insulation diagnostic tests include insulation resistance, polarization index(P.I.), dissipation factor($tan{\delta}$), maximum partial discharges($Q_{max}$) and AC breakdown test. This study evaluated the correlation between insulation diagnostic test and AC breakdown test for stator winding of high voltage induction motor. On the basis of these test results, we expect that this study can be used for effectively assessing the results of insulation diagnostic tests for similar class induction motors in service at industrial field.

Rotor Failures Diagnosis of Squirrel Cage Induction Motors with Different Supplying Sources

  • Menacer, Arezki;Champenois, Gerard;Nait Said, Mohamed Said;Benakcha, Abdelhamid;Moreau, Sandrine;Hassaine, Said
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.219-228
    • /
    • 2009
  • The growing application and the numerous qualities of induction motors (1M) in industrial processes that require high security and reliability levels has led to the development of multiple methods for early fault detection. However, various faults can occur, such as stator short-circuits and rotor failures. Traditionally the diagnosis machine is done through a sinusoidal power supply, in the present paper we study experimentally the effects of the rotor failures, such as broken rotor bars in function of the ac supplying, the load and show the impact of the converter from diagnosis of the machine. The technique diagnosis used is based on the spectral analysis of stator currents or stator voltages respectively according to the types of induction motor ac supplying. So, four different ac supplying are considered: ${\odot}$ the IM is directly by the balanced three-phase network voltage source, ${\odot}$ the IM is fed by a sinusoidal current source given the controlled by hysteresis, ${\odot}$ the IM is fed (in open loop) by a scalar control imposing through ratio V/f=constant, ${\odot}$ the IM is controlled through a vector control using space vector pulse width modulation (SVPWM) technique inverter with an outer speed loop.

A study in fault detection and diagnosis of induction motor by clustering and fuzzy fault tree (클러스터링과 fuzzy fault tree를 이용한 유도전동기 고장 검출과 진단에 관한 연구)

  • Lee, Seong-Hwan;Shin, Hyeon-Ik;Kang, Sin-Jun;Woo, Cheon-Hui;Woo, Gwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.123-133
    • /
    • 1998
  • In this paper, an algorithm of fault detection and diagnosis during operation of induction motors under the condition of various loads and rates is investigated. For this purpose, the spectrum pattern of input currents is used in monitoring the state of induction motors, and by clustering the spectrum pattern of input currents, the newly occurrence of spectrum patterns caused by faults are detected. For the diagnosis of the fault detected, a fuzzy fault tree is designed, and the fuzzy relation equation representing the relation between an induction motor fault and each fault type, is solved. The solution of the fuzzy relation equation shows the possibility of occurence of each fault. The results obtained are summarized as follows : (1) Using clustering algorithm by unsupervised learning, an on-line fault detection method unaffected by the characteristics of loads and rates is implemented, and the degree of dependency for experts during fault detection is reduced. (2) With the fuzzy fault tree, the fault diagnosis process become systematic and expandable to the whole system, and the diagnosis for sub-systems can be made as an object-oriented module.

  • PDF

Analysis of Electromagnetic Characteristics according to Bar broken in Squirrel-cage Induction Motor (농형 유도전동기의 회전자 바 파손에 따른 전자기적 특성 해석)

  • Lee, Sung-Hyung;Kim, Mi-Jung;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.95-97
    • /
    • 2008
  • This Paper presents the effects according to broken rotor bar of squirrel cage induction motor. The rotor faults of induction motors may cause bad effects on the performance of the motor. An accurate modeling and analysis of characteristics of damaged rotor bar in the induction motor are developed using FEM(Finite Element Method). The results can be useful for real-time on-line monitoring system of an induction motor.

  • PDF