• Title/Summary/Keyword: Induction Motors

Search Result 746, Processing Time 0.022 seconds

Design of Induction Motor for Electric Vehicles using Optimization Technique (최적설계기법을 이용한 전기자동차용 유도전동기 설계)

  • Kim, Y.K.;Lim, K.M.;Yeom, K.N.;Bae, S.H.;Yoo, Y.S.;Yoo, W.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.6-8
    • /
    • 1996
  • Induction Motors are preferred because of their ability to achieve higher power density, efficiency and reliability than permanent DC Motors for Electric Vehicle Drives. This paper describes induction motor design procedure to achieve high power density for EV using nonlinear optimization technique. Objective functions are considered to improve power density and a set of eight design variables is identified. As a numerical example, an induction motor of 15kW, 3 phase and 4 pole is designed.

  • PDF

Sliding mode control of induction motors based on reduced order model

  • Hashimoto, Hideki;Ishikawa, Yoji;Harashima, Fumio;Rudef, Alexander;Utkin, Vadim-I.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1607-1610
    • /
    • 1991
  • It is difficult to design the controller of an induction motor because of its non-linearity and high order dynamics. But it is possible to get reduced order system using the theory of singular pertubation because the dynamics of induction motor consists of fast stable mode and slow one. On the other hand, the sliding mode control is well-known for its performance of robustness. This paper deals with the sliding mode controller of induction motors based on the reduced order system.

  • PDF

Induction Motor Control Using Adaptive Backstepping and MRAS (적응 백스테핑과 MRAS를 이용한 유도전동기 제어)

  • Lee, Sun-Young;Park, Ki-Kwang;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.77-78
    • /
    • 2008
  • This paper presents to control speed of induction motors with uncertainties. We use an adaptive backstepping controller with fuzzy neural networks(FNNs) and model reference adaptive system(MRAS) at Indirect vector control method. The adaptive backstepping controller using FNNs can control speed of induction motors even we have a minimum of information. And this controller can be used to approximate most of uncertainties which are derived from unknown motor parameters, load torque such as disturbances. MRAS estimates to rotor resistance and also can find optimal flux to minimize power losses of Induction motor. Indirect vector PI current controller is used to keep rotor flux constant without measuring or estimating the rotor flux. Simulation and experiment results are verified the effectiveness of this proposed approach.

  • PDF

A Study on the Parameters and Characteristic of Induction Motor driven by Inverter (인버터로 구동되는 유도전동기의 정수 및 특성에 관한 연구)

  • 전내석;김종윤;오진석;김윤식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.497-504
    • /
    • 2000
  • This paper presents a method for the equivalent-circuit parameters and torque characteristics calculation of squirrel-cage induction motors. The measurment of motor parameters were calculated by the stator resistance test, the blocked rotor test and no load test through T type equivalent-circuit method. Especially, this paper describes the test results obtained by using hall sensor and strain gage for the current and the torque characteristics of induction motors. 1(HP), three-phase squirrel cage induction motor has been used during the test and the parameters are compared with those obtained by the maker parameters of simulation results and experiment.

  • PDF

The speed control system of an induction type a.c servo motor by vector control (벡터제어법에 의한 유도형교류 서보전동기의 속도제어에 관한 연구)

  • 홍순일;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.56-63
    • /
    • 1989
  • In recent years, a.c servo motors have been gradually replacing d.c sevo motors in various high-performance demanded aplications such as machine tools and industrial robots. In particular, the high-performance slip-frequency control of an induction motor, which is often called the vector control, is considered one of the best a.c drive. In this paper, the transient state equation and vector control algrithms of an induction motor are described mathematically by using the two-axis theory(d-q coordinates). According to the result of these algorithms, we scheme the speed control system for an induction type ac servo motor in which vector control is adopted to give tha a.c motor high performance. Motor drive is a PWM inverter using power MOS-FET, and is controlled in order to let the actual input current of the motor track the current reference obtained from a microcomputer(8086 cpu). Driving experiments are performed in the range of 0 to 3000 rpm, and it is verified that high speed response is possible.

  • PDF

Adaptive Feedback Linearization Control Based on Stator Fluxes Model for Induction Motors

  • Jeon, Seok-Ho;Park, Jin-Young
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.253-263
    • /
    • 2002
  • This paper presents an adaptive feedback linearization control scheme for induction motors using stator fluxes. By using stator flukes as states, overparameterization is prevented and control inputs can be determined straightforwardly unlike in existing schemes. This approach leads to the decrease of the relative degree for the flux modulus and thus yields a simpler control algorithm than the prior results. In this paper. adaptation schemes are suggested to compensate for the variations of stator resistance. rotor resistance and load torque. In particular, the adaptation to the variation of stator resistance with a feedback linearization control is a new trial. In addition, to improve the convergence of rotor resistance estimation, the differences between stator currents and its estimates are used for the parameter adaptation. The simulations show that torque and flux are controlled independently and that the estimates of stator resistance, rotor resistance, and load torque converge to their true values. Actual experiments on a 3.7㎾ induction motor verify the effectiveness of the proposed method.

Characteristics Analysis of Electromagnetic Pump using Linear Induction Motor (선형유도전동기를 이용한 전자기 펌프의 특성해석)

  • 김창업
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.2
    • /
    • pp.36-42
    • /
    • 2000
  • This paper presents the characteristics analysis of electromagnetic pump using linear induction motors. The electromagnetic pump is designed to transfer the molten metals by the electromagnetic force of linear induction motors. The characteristics f a linear induction motor are analysed by the equivalent circuit method considering the end effects. For the verification of the analysis method, the locked test and load test with molten tin were made. The test results of locked test were compared with the simulations, and the velocity of the load test with molten zinc showed 0.24[m/x] with air gap 30[gap] which is sufficient for transferring molten tin.

  • PDF

Design Characteristics of Torque Harmonics Reduction of Induction Motors for Electric Vehicle Propulsion

  • Jeon, Kyung-Won;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.212-215
    • /
    • 2013
  • This paper deals with torque harmonic characteristics and its reduction design of induction motors for electric vehicle (EV) propulsion. For calculating the stator harmonic flux of squirrel-cage induction motor, the numerical methods have been employed on the structural configuration design of stator and rotor teeth. In particular, torque ripples including spatial harmonics are obtained by Finite Element Method (FEM), and their individual harmonic components are identified with Fast Fourier Transform (FFT). In this paper, design modification on the teeth surface gives rise to the significant reduction of torque ripples including spatial torque harmonics, which have been obtained with FEM.

Evaluation of Insulation Performance on Stator Windings of Inverter-Fed Induction Motor According to Impregnation Techniques (인버터 구동 유도전동기 고정자 권선의 함침기법에 따른 절연성능 평가)

  • Hwang, Don-Ha;Kang, Dong-Sik;Kim, Yong-Joo;Lee, In-Woo;Koo, Ja-Yoon;Kim, Dong-Hee;Lee, Kwang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.7
    • /
    • pp.373-379
    • /
    • 2006
  • The low-voltage induction motors have been widely driven by IGBT PWM inverters, ever since it was used to apply variable speed drives. Recently, the insulation failures of the stator windings become critical problems due to the high ratio of dv/dt in IGBT PWM inverters. In this paper, the detailed insulation tests on the IGBT PWM inverter fed induction motor are carried out. Five different types of insulation techniques are used to ti induction motors. The change of the insulation characteristics such as partial discharge, AC current, capacitance, and dissipation factor are compared. respectively In addition, insulation breakdown tests using the high voltage pulse are performed, and corresponding breakdown voltages are analyzed.

Characteristics Analysis of Squirrel Cage Induction Motors with Rotor Bar Broken (농형 유도전동기의 회전자 바 손상에 따른 특성 해석)

  • Kim, Byong-Kuk;Kim, Mi-Jung;Cho, Yun-Hyun;Lim, Seong-Hwan;Hwang, Don-Ha;Kang, Dong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.779-780
    • /
    • 2006
  • This paper describes the effects of rotor-bar broken in induction machines. The analysis has been made on 7.5kW, 4P, 1,768[rpm], three-phase induction motors in a healthy and broken-rotor bars fault conditions at rated loading conditions. The effects of the rotor-bar broken, magnetic force are investigated by finite element method (FEM) and experiment. The results can be useful for real-time on-line monitoring of an induction motor.

  • PDF