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Abstract

It is difficult to design the controller of an in-
duction motor because of its non-linearity and high
order dynamics. But it is possible to get reduced
order system using the theory of singular pertu-
bation because the dynamics of induction motor
consists of fast stable mode and slow one. On the
other hand, the sliding mode control is well-known
for its performance of robustness. This paper deals
with the sliding mode controller of induction mo-
tors based on the reduced order system.

1 Introduction

The dynamics of an induction motor is governed by
nonlinear system of differential equations (1 a5 follows

1@1 = —Ryy - 9-]‘/’1 +u (1)
P2 = —Rala+ (0 — w)dpy

I, =T-T, (2)
T =i;TIy = =127 Jopy = M, Ti, 3)

0 -1
where u, 1y, 1, %2,%: € R? are voltage, stator and rotor
current and flux vectors, T and T}, are the motor and load
torques, w, is a rotation speed, # is a rotation speed of

the coordinate system, I is inertia. The flux vectors are
expressed as

{ ¥1 = Ly + Mi, { Y1 = Lot + Miy
Y2 =

Mil + Lgig 1[)2 = L,giz + MIM (4)

R\, Ry, Ly,Ly3, M, L,y, L,, are paremeters of the stator
and rotor windings, Iy is a magnetizing current. Futher it
is assumed that Ry = R; = Ry L,y = L,y = L.

Efficient speed (positiion) control algorithms imply de-
coupling the overall motion into two components depending
on the orientation of the motor flux and then correspond-
ingly design of control components providing desired values
of the motor flux and torque 2, The field oriented con-
trol design methods need, on one hand, information on the
current values of flux components, obtained with the help
of sensors or observers, and, on the other hand, nonlinear
state dependent coordinate transformations. These reasons
may hinder implementation of induction motor control sys-
tems in particular for low power electric drives when ap-
plication of complex control algorithms may prove to be
unjustified.

One of the possible ways of simplification of control al-
gorithms consists in using reduced order models. The dy-
namic processes in inductioin motors may consist of partial
motions of different rates. The rate of varying of a magne-
tizing current may be much faster than that of mechanical
rotation; the time constant associated with stator and ro-
tor currents is much less than a magnetizing current one. It
follows from the theory of singularly perturbed systemsla]
that the existence of rate separated motions enables order
reduction of the system and as a result simplification of the
desigh procedure.

The paper deals with two versions of induction motor
control systems based on reduced order models — of the
first and of the third orders. In the first case the electro-
magnetic dynamics is neglected, in the second — the pro-
cesses associated with dissipation fluxes. The motor slip
and phase are handled as control actrions and designed as
discontinuous fuanctions of control error which is steered to
zero due to enforcing sliding modes.

2 First—Order Model

The design method being developed in this section is
oriented to induction motors with a high inertia moment
reduced to the rotor shaft. The motion equations (1) (2)
(3) with respect to new time and the coordinate system
fixed with of the voltage vector (§ = w;)

t = t/]I (5)

may be written as

l“él = u- Rij —w i

ppy = —Rig- (wl - wz)% (6)
o, = T-T

T = 4TJY

where g = 1/I. Substitution the stator and rotor cur-
rents as functions of fluxes i; = A~ Ly — M), iy =

A~Y =My — Lisy), A= LiL, - M? into (6) yields

- RL RM
nr + “le/’l +widh - T¢2 —u =0
. RM RL
wpg — Tl/’l + “Z—l-% +(w—w)y, = 0 (7)
or in a matrix form
. 1
b=-—Av+B, ®)

where
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For high enough value of I or small g the system motion
may be decoupled into fast and slow components — with
respect to vector ¢ and w; — rotor speed correspondingly.
Approximate solution to (9) within ;2 accuracy may be
obtained from (9) with ¥ = 0, if the fast motion is asymp-
totically stable under the assumption that the slow com-
ponent is constant or matrices A and B are time invariant.
It means that asymptotic stability of the equation in devi-
ations
5 = —Lasy, (10)
[
where ¢ = 9o + §¢, 1o = uA~! B should be studied.
Time derivative of Lyapunov function v = —611)151/) >0
on the solutions of (10)

T
l&/)TA+2A

b=—

b

is negative definite which testifies to asymptotic stability,
since the matrix

LR 0 -MR 0
AXAT L1 0 LR 0 -MR|
2 A|-MR 0 LR 0

0 -MR 0 LR

has positive dioganal determinants.Hence to derive a re-
duced model g should be made equal to zero

0 = u—Ri;—uwIi

0 = —Rig - ((AJ] bt u)z)-]’(/)g

¥ = Lyiy+ Mi, (12)
e = Miy+ Ly,

wy = %[il\]lbl =Ty

the vectors 7; and v, should be found as functions of the
voltage vector u. Neglecting the electromagnetic dynam-
ics means that the rotation speeds of the flux and voltage
coincide and

Wa +s= wy
where 3 is a motor slip. The above procedure results in
Id)g = T(S) - (13)

where T'(s) is the well-known induction motor “torque-slip
"characteristics (Fig.1).
|“12 M2

i3

T(s) =
[+ 2()] + 25 B2 (1= ) + [1 + ?(B)2swd(L2)7)
(14)

lul? = ul + u} (15)
MZ
n=1-11

The maximum value of the motor torque T, corresponds
to the critical value of slip

14wl —-L 2
For |s] < s,
T(s) =~ Z—"s. (17)

In the framework of the model (13) and (15), the sliding
mode control is a discontinuous function of the control error

3 = 3. sgnfwp(t) ~ wy), (18)

wo(t) — refernece input.

For T,y >| Tp + Iy | the values 0 = wy — w, and &
have different signs therefore after a finite time interval
sliding mode occurs M1 and the motor rotation is equal to
the reference input identically.

3 Third—Order Model

The second approach to the design of sliding mode con-
trol algorithm is based on the assumption that the time
constant related to the motor flux is considerably greater
than that of the dissipation flux.

The possibility of motion separation in this case be-
comes transparent if the motor motion equations (1) (2)
(3) are written with respect to the stator and magnetixing
currents:

(L2 + M)iyg=—Lowadiz — [Rlg + (M + L3)8) — LywoJ}ing
+u

M. L.M
L,(1 + =)=~ + )RI; + ——(0 — wp)J - L,83]5;
L, L,
[L—Rlz - MwJling +u (19)
2
Tig = (Loiy,T + MiyT)Jiy = Ty,
Since for induction motors the relationships
L, €« M=L, (20)

hold, the dissipation inductance L, = u may be handled as
a small papameter and the first equation in (20) represent
the fast motion. Zeroing u should be justified by the anal-
ysis of asymptotic stability of the first equation under the
assumption that the rest of the state vector components
are constant. It may be represented as

wlil=-[5 2]V

(1)
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where

= 2R

O+ (6 — wolu
u+iyR
—ipwy Ly

Z &0 Q
i

or as equation with respect to deviation

61 = -——-A.&z
] = 15+ 6t
o = A7'B
_[c -b (22)
4 =1p ¢ ]
M
5 - [¥)
Time derivative of positive definite Lyapunov function
v= %6;’7&‘ (23)
on the system (22) trajectories
b= 5 T+ AT
2
A+A [C 0
[ 3

is negative definite. Hence the fast motion is asymptot-
ically stable which enables reduction of the system order
finding the stator current from the first equation of (19)
with L, = 0 as a function of u,ip,8,w; and then substi-
tuting it into the rest equation.

The above procedure results in motion equations in the
coordinate system rotating with the vector iy,

dlim|
2M it

= |ucosp — [im|R

0 = |u|sing — 20[ipg|M + |inglwaM (25)

dw,
Fa =
where ¢ is angle between the vectors u and 7).

The angle ¢ is handled as a control action: jumpwise
increment of ¢ by 7 may lead to change of sign of the right—
hand side in equation of the mechanical motion and as a
result to accelaration or decelaration of the motor shaft
rotation. Inversion of the voltage phase in correspondence
with

= ﬁ|zM|(|u|smap - limlwa M) = Ty,

p = a,(t) - g(l —sgno), o=uwy(t)—w; (26)

(ay(t) — continuous time function depending on the motor
state ) similarly to the discontinuous control (18) makes the
sgns of o and & opposite and due to origination of sliding
mode the rotor speed tracks the reference input.

4 Combined Control Algorithm

For the above control algorithms it is assumed that the
motor slip or the phase of the voltage are discontinuous
funtions of the control error. Futher the system combining
both control methods will be studied analytically.

The vectors u and ip are presented in Fig.2.

Let the value of the input voltage rotation speed is
formed in correspondence with the slip control algorithm.
Wi = Wy + 888N O (27)

Taking into account the phase control algorithm (26)
and relationships

t T
ay,=0+¢, a,= /(; wydt — -2-(1 — sgn o) (28)
obtain
t T
h=0+p= / (w2 + sersgn o)dt — 5(1 — sgn 0)(29)
o

Let ¢* = ¢ — Zsgn o, then Zsgn o + ¢* = ¢, 0 =
wq + 8.,.85g0 0 — ¢*. Substitution ¢ and @ into (25) results
in

M: | |sm<psgna |M|
dt 2M
d;’; = 8.,s5gn 0 + % - %{cos p*sgn o (30)
d . Mz

I% = -2—E|1M||u|cosnp‘sgn o~ ﬁwzlel2 -T

The condition of sliding mode to exist ( s and § should
have opposite sgns ) may be derived from (30):

M? TL

——|ipr]|uf cos * > |ug + SRT° + T (31)

M
2RI
Origination of the sliding mode means that ihe control
mismatch is steered to zero. To analyze the behaviour of
the rest two coordinates ¢* and ip, the equaticn o = 0
should be solved with respect to sgno and the solution
refered to as equivalent control is to be substituted into the
first two equation with ¢ = 0141, Applying the conventional
linearization method it caa be shown that for time invariant
load torques the motion equation has the only equilibrium
point which is asymptotically stable.

5 Implementation

The small time constants having been neglected in the
reduced order models may result in oscillatory component
in system coordinates since switching in control excites
the unmodelled dynamics. This phenomenon — so—called
chattering — is eliminated in the shdmg mode control sys-
tems with asymptotic observers Bl In practical applica-
tions the observers were designed under the assumption
that the load torque varies much slower than the motor
state variables.

In the system with an observer the estimate &, of the
rotor speed is used in the switching function

o =wp(t) - g (32)

while the observer is governed by equations

dw .
I"a'tl = (P]Sgl'l g — Pzt:.)g - T[,) + Il(wz - L:)z)

dT’ .

TtL' 12(0.’2 - wz) (33)
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The experimental set up was designed, assembled and
tested. Its blockdiagram is presented in Fig. 3. Figure 4
shows the transient processes for periodical reference input
with the amplitude equal to 0.3 of the nominal rotor speed.

6 Conclusion

The developed control algorithms are considerably sim-
pler than conventional ones associated with the field ori-
ented approach since for their implementation only output
variable is needed and the control actions are sign functions
of the mismatch.

The experiments demonstrated high dynamic proper-
ties of the system. Phase control in the combined systems
enables reduction of the voltage amplitude at low speed
modes automatically which prevents the motor under con-
trol from overheating.
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Figure 1. Torque-Slip Characteristics

Figure 2. Vector diagram of magnetized
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Figure 3. Blockdiagram of control system
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Figure 4. Time response of rotor speed



