• Title/Summary/Keyword: Inductance Compensator

Search Result 10, Processing Time 0.022 seconds

A study on Performance Improvement of SPMSM with Improved Decoupling Current Controller (개선된 비간섭 전류제어기를 이용한 영구자석 동기 전동기의 성능 향상에 관한 연구)

  • Cho, Su-Eog;Kim, Jeong-Su;Kim, Cheul-U
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.151-159
    • /
    • 2007
  • This paper proposes a improved decoupling current control algorithms using a compensator to enhance the robustness to the stator inductance error. And the compensator composed from a d-axis current error for sensing change of the real stator inductance can match the estated stator inductance to the real stator inductance. A great advantage of this algorithms is more robust than feedforward decoupling current control or dynamic decoupling control. So it looks suitable to the practical applications where the exact parameters are unknown. Though simulation and experimental results with 1[kW] prototype PMSM and TMS320F2812 board for motor control, we show that the proposed controller achieves the desired performance.

Static Var Compensator Using Current Source PWM Converter (전류형 PWN 콘버어터의 희한 정지형 무효전력 보상장치에 관한연구)

  • 김철우;권순재;김광태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1183-1190
    • /
    • 1990
  • In this paper, instantaneous reactive power compensation algorithm is proposed and analyzed. The static Var generator developed in this paper is the current source PWM converter using hysteresis comparator method, which compensates the reactive power by detecting each instantaneous phase voltage and line current, independently. Some aspects on the static Var compensator-such as inductance, capacitance, hysteresis width, and switching frequency, etc.-are discussed. The dynamic performances are examined through digital simulation and experimental test.

  • PDF

A High-Performnce Sensorloss Control System of Reluctance Synchronous Motor with Direct Torque Control by Consideration of Nonlinerarly Inductances

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.146-153
    • /
    • 2002
  • this paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The problem of DTC for high-dynamic performance RSM drive is generating a nonlinear torque due to a saturated nonlinear inductance curve with various load currents. The control system consists of stator flux observer, compensating inductance look-up table, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source unverter, and TMS320C31 DSP controller. The stator flux observer is based on the combined voltage and current model with stator flux feedback adapitve control that inputs are the compensated inductances, current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operation area. It does not requrie the knowledge of any montor paramenters, nor particular care for moter starting, In order to prove the suggested control algorithm, we have simulation and testing at actual experimental system. The developed sensorless control system is showing a good speed control response characterisitic result and high performance features in 20/1500 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

MIC with Ripple Voltage Compensator Using Regenerative Snubber (에너지 회생형 스너브를 이용한 리플 전압 억제기를 가지는 MIC(Module Integrated Converter))

  • Kim, Hong-Sung;Chang, Hun Ki;Yoon, Yeo Young
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.75-76
    • /
    • 2014
  • This study deals with a isolation type MIC(Module Integrated Converter) for AC module with advantages such as DC Wireless, freely selectable installation capacity, minimized shadow effect etc. In this paper, MIC circuit with the function which can remove the ripple voltage of PV module and give the discharging path for charged energy in leakage inductance of isolation transformer. The validity of proposed circuir is verified by the simulation with PSIM.

  • PDF

Effects of a Static Synchronous Series Compensator (SSSC) Based on a Soft Switching 48-Pulse PWM Inverter on the Power Demand from the Grid

  • Ustun, Taha Selim;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.85-90
    • /
    • 2010
  • In this paper the effects of a Static Synchronous Series Compensator, which is constructed with a 48-pulse inverter, on the power demand from the grid are studied. Extensive simulation studies were carried out in the MATLAB simulation environment to observe the compensation achieved by the SSSC and its effects on the line voltage, line current, phase angle and real/reactive power. The designed device is simulated in a power system which is comprised of a three phase power source, a transmission line, line inductance and load. The system parameters such as line voltage, line current, reactive power Q and real power P transmissions are observed both when the SSSC is connected to and disconnected from the power system. The motivation for modeling a SSSC from a multi-pulse inverter is to enhance the voltage waveform of the device and this is observed in the total harmonic distortion (THD) analysis performed at the end of the paper. According to the results, the power flow and phase angle can be controlled successfully by the new device through voltage injection. Finally a THD analysis is performed to see the harmonics content. The effect on the quality of the line voltage and current is acceptable according to international standards.

A Sensorless Speed Control of 2-Phase Asymmetric SRM with Parameter Compensator (파라미터 보상기를 가지는 비대칭 SRM의 센서리스 속도제어)

  • Lim, Geun-Min;Ahn, Jin-Woo;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.238-245
    • /
    • 2012
  • This paper presents a sensorless speed control of a 2-phase switch reluctance motor(SRM). The proposed sensorless control scheme is based on the slide mode observer with parameter compensator to improve the estimation performance. In the stand still position, the initial rotor position is determined by pulse current responses of each phase windings and the current difference. In order to determine an accurate initial rotor position, the two initial rotor positions are estimated by the difference of the pulse currents. From the stand still to the operating region, a simple open loop control which determines the commutation sequence by the pulse current of the unexcited phase winding is used. When the motor speed is reached to the sensorless control region, the estimated rotor position and speed by the slide mode observer are used to control the SRM. The flux calculator used in the slide mode observer is designed by phase voltage and the voltage drops in the phase resistance of the winding. The accuracy of the flux calculator is dependent on the phase resistance. For the continuous update of the phase resistance, current gradient at the inductance break point is used in this paper. The error of the estimated rotor position at the current gradient position is used to update the phase resistance to improve the sensorless scheme. The proposed sensorless speed control scheme is verified with a practical compressor used in home appliances. And the results show the effectiveness of the proposed control scheme.

Sensorless initial position detecting method and speed control using parameter compensator with flux observer of the 2-phase SRM with asymmetric inductance profile (비대칭 2상 SRM의 초기각 검출과 파라미터 오차 보상기를 가지는 자속관측기법을 적용한 센서리스 속도제어)

  • Lim, Geun Min;Lee, Jong-Heon;Ahn, Jin-Woo;Lee, Dong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.153-154
    • /
    • 2011
  • 본 논문은 비대칭 2상 SRM의 센서리스 속도제어를 위한 초기각 검출 및 초기 기동방식과 자속관측기를 적용한 센서리스 제어에서 전동기의 온도 및 파라미터 변동에 의한 자속 오차 성분으로 인해 발생하는 위치 추정오차를 보상하기 위한 새로운 보상기를 제안한다. 제안된 방식은 전압펄스 인가로 초기각을 검출하고 검출된 초기 위치정보를 바탕으로 동일한 전압펄스 인가를 통해 비여자상이 여자상이 되는 회전자 위치를 검출하여 상여자를 교체하는 초기기동을 통해 자속관측기를 적용한 센서리스 제어로 안정적으로 진입하도록 한다. 이 때, 제안된 추정위치 보상기를 통해 추정된 센서리스 위치를 순시적으로 보상한다.

  • PDF

A high voltage resonant genrator for X-ray apparatus (X-선 발생기기용 공진형 고전압 발생기)

  • 김학성;원충연
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.217-225
    • /
    • 1996
  • This paper describes a high power resonant inverter for diagnostic X-ray generators using zero-voltage soft-switching technology. The system consists of a step-down chopper, a resonant phase-shift PWM inverter, a hihg-voltage diode, and high voltage cables a smoothing DC capacitor. The inverter makes use the leakage inductance of the hihg-voltage transformer and external capacitor as resonant components. The rectified input voltage is controlled by a step-down chopper with input voltage compensator. The output regualtion is obtained by a resonant phase-shift PWM inverter with the digital feedback controller using DSP (digital signal processor), resulting in fast rising time and wide output voltage variation. The theoretical results are correlated with results from an experimental prototype of a 7-kVp, 300mA (21kW).

  • PDF

Improvement of Torque Ripple Using Compensation for the Phase Delay of Winding Inductance on Brushless DC Motor (상 권선 인덕턴스의 위상지연 보상에 의한 브러시리스 직류 전동기의 토크 리플 개선)

  • 유시영;이두수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.180-190
    • /
    • 2001
  • In this paper, a method of reducing torque ripples caused by phase winding inductances in BLDCM(Brushless DC Motor) drives is presented. In order to compensate the inductive current delays, commutation angle is controlled by the value compensating angle varied in accordance with rotational speed. Using the microprocessor AVR 8515, the proposed compensator is implemented and experiments are done with a 4-pole 3-phase BLDCM. The results show the remarkable reduction of torque ripple at whole speed ranges.

  • PDF

Optimal Scheduling of Level 5 Electric Vehicle Chargers Based on Voltage Level

  • Sung-Kook Jeon;Dongho Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_1
    • /
    • pp.985-991
    • /
    • 2023
  • This study proposes a solution to the voltage drop in electric vehicle chargers, due to the parasitic resistance and inductance of power cables when the chargers are separated by large distances. A method using multi-level electric vehicle chargers that can output power in stages, without installing an additional energy supply source such as a reactive power compensator or an energy storage system, is proposed. The voltage drop over the power cables, to optimize the charging scheduling, is derived. The obtained voltage drop equation is used to formulate the constraints of the optimization process. To validate the effectiveness of the obtained results, an optimal charging scheduling is performed for each period in a case study based on the assumed charging demands of three connected chargers. From the calculations, the proposed method was found to generate an annual profit of $20,800 for a $12,500 increase in installation costs.