• Title/Summary/Keyword: Inducible nitric oxide

Search Result 1,202, Processing Time 0.022 seconds

Anti-inflammatory Effects of Lemon Myrtle (Backhousia citriodora) Leaf Extracts in LPS-induced RAW 264.7 Cells (LPS로 유도된 RAW 264.7 세포에 대한 레몬 머틀 잎 추출물의 항염증 효과)

  • Kim, Pan Kil;Jung, Kyung Im;Choi, Young Ju;Gal, Sang Wan
    • Journal of Life Science
    • /
    • v.27 no.9
    • /
    • pp.986-993
    • /
    • 2017
  • Lemon myrtle (Backhousia citriodora) has been identified as one of the plants that are likely to undergo important commercial exploitation. This study was carried out to investigate the anti-inflammatory activities and nitric oxide synthase (iNOS) expression of hot water (LMW) and 80% ethanol (LME) extracts from lemon myrtle leaf in lipopolysaccharide-induced (LPS) RAW 264.7 cells. The total phenol content of LMW and LME was 207.44 and $331.54{\mu}g$ tannic acid equivalents (TAE)/mg, respectively (p<0.01). DPPH radical scavenging activities of LMW and LME were remarkably increased in a dose-dependent manner, and were about 90.69% and 92.50% at 0.5 mg/ml, respectively. Superoxide dismutase (SOD) activities of LMW and LME were 106.22% and 103.58% at 1 mg/ml, respectively. The highest activity (91.03%) of nitrite-scavenging was observed for LME at 1 mg/ml at pH 1.2, while the activity for LMW was about 81.03% under the same conditions (p<0.05). Anti-inflammatory effect was examined in LPS stimulated RAW 264.7 cells. Nitric oxide (NO) production were reduced to 35.41% and 78.39% by addition of LMW and LME at 0.5 mg/ml, respectively (p<0.05). LMW and LME reduced protein expression of inducible nitric oxide synthase (iNOS) in a dose-dependent manner (p<0.05). These results, we conclude that lemon myrtle may be a highly valuable natural product owing to its high-quality functional components as well as its anti-oxidant and anti-inflammatory activities.

Anti-Inflammatory Effects of Oenanthe javanica Ethanol Extract and Its Fraction on LPS-Induced Inflammation Response (Lipopolysaccharide로 유도한 대식세포의 염증반응에서 미나리 에탄올 추출물 및 분획물의 항염증 효과)

  • Jang, Ji-Hun;Cho, Hyun-Woo;Lee, Bo-Young;Yu, Kang-Yeol;Yoon, Ji-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.11
    • /
    • pp.1595-1603
    • /
    • 2016
  • The present study examined the anti-inflammatory effects of Oenanthe javanica ethanol extract (OJE) and its fraction on the lipopolysaccharide (LPS)-induced inflammatory response in RAW 264.7 macrophage cells. OJE remarkably reduced protein expression of inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX-2), resulting in inhibition of production of nitric oxide (NO). In order to identify the anti-inflammatory effects of bioactive fractions, OJE was fractionated into hexane, dichloromethane, ethyl acetate, and n-butanol fractions. The results show that the ethyl acetate and dichloromethane fractions reduced production of NO without cytotoxicity. Especially, the ethyl acetate fraction effectively reduced protein expression of iNOS and COX-2. Proinflammatory cytokine production was also reduced by ethyl acetate fractions in LPS-induced RAW 264.7 cells. These data suggest that OJE and its fraction possess pharmacological activity and might be useful for development of anti-inflammatory agents or dietary supplements.

Effect of Glutathione on Lead Induced Modulation of NO Synthesis in RAW 264.7 Cell (RAW 264.7 Cell에서 납에 의한 NO 생성의 조절에 미치는 Glutathione의 효과)

  • Oh, Gyung-Jae;Kwon, Keun-Sang;Yoon, Wook-Hee;Shin, Sae-Ron
    • Journal of Preventive Medicine and Public Health
    • /
    • v.35 no.4
    • /
    • pp.269-274
    • /
    • 2002
  • Objectives : To evaluate the elect of glutathione(GSH) on lead induced modulation of nitric oxide(NO) synthesis, and to examine how lead modulates NO production in macrophages. Methods : This study was observed in a culture of RAW 264.7 cells, which originated from a tumor in a Balb/c mouse that was induced by the Abelson murine leukemia virus. The compounds investigated were lead chloride, N-acetyl-cystein(NAC), and Buthionine Sulfoximine( BSO). Results : ATP synthesis in RAW 264.7 cells was unchanged by each lead concentration exposure in a dose dependent manner. The NO synthesis was decreased when exposed to lead($PbCl_2$) concentration $0.5{\mu}M$. The presence of $300{\mu}M$ NAC, used as a pretreatment in the culture medium, caused the recovery of the lead induced decrease in NO synthesis, but in the presence of $300{\mu}M$ BSO as a pretreatment, there was no recoverey. Pretreatment with NAC and BSO had no affect on ATP synthesis at any of the lead concentrations used. Conclusions : These results indicated that GSH has a protective effect toward lead toxicity, and suggested that the inhibition of NO production in macrophage due to lead toxicity may be related to cofactors of iNOS (inducible nitric oxide synthase)

Hesperetin Ameliorates Inflammatory Responses in Lipopolysaccharide-stimulated RAW 264.7 Cells via p38 MAPK and ERK1/2 (마우스 대식세포 RAW 264.7 세포주에서 hesperetin에 의한 p38 MAPK와 ERK1/2를 통한 염증반응 조절)

  • Lee, Seung-Hoon;Lee, Eun-Joo;Chung, Chungwook;Sohn, Ho-Yong;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.129-134
    • /
    • 2019
  • In a previous study, we isolated 11 different kinds of compounds from ethyl acetate fractions of lees (jubak) which is a by-product of Korean traditional wine production. These compounds were identified as caffeic acid, coumaric acid, D-mannitol, ferulic acid, hesperetin, hesperidin, naringenin, naringin, sinapic acid, syringic acid, and vanilic acid. To evaluate their anti-inflammatory activities in an in vitro model, nitric oxide (NO) production was measured in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells after the treatment of these cells with each compound. Among the various chemicals, hesperetin and naringenin showed the highest inhibition of NO production in the LPS-activated RAW 264.7 cells. Hesperetin was chosen for further study because of its strong anti-inflammatory activity and because the mechanisms underlying its anti-inflammatory properties still remain unclear. Our results showed that hesperetin dramatically inhibited NO production in a dose-dependent manner as compared with in an LPS-only treated group, without affecting cell viability. In addition, hesperetin reduced the protein expression of the pro-inflammatory gene inducible nitric oxide synthase (iNOS) in a dose-dependent manner, whereas it did not affect cyclooxygenase-2 (COX-2) expression. Furthermore, hesperetin inhibited phosphorylation of p38 mitogen- activated protein kinase (MAPK) and extracellular signal regulated kinase (ERK) 1/2, whereas it did not affect phosphorylation of c-jun N- terminal kinase (JNK). The results indicated that hesperetin regulated the LPS-induced inflammatory response by suppressing p38 MAPK and ERK1/2 signaling. Overall, our results may help to understand the mechanisms underlying the anti-inflammatory activity mediated by hesperetin.

Allomyrina dichotoma larva extract attenuates free fatty acid-induced lipotoxicity in pancreatic beta cells

  • Kim, Kyong;Kwak, Min-Kyu;Bae, Gong-Deuk;Park, Eun-Young;Baek, Dong-Jae;Kim, Chul-Young;Jang, Se-Eun;Jun, Hee-Sook;Oh, Yoon Sin
    • Nutrition Research and Practice
    • /
    • v.15 no.3
    • /
    • pp.294-308
    • /
    • 2021
  • BACKGROUD/OBJECTIVES: Allomyrina dichotoma larva (ADL), one of the many edible insects recognized as future food resources, has a range of pharmacological activities. In a previous study, an ADL extract (ADLE) reduced the hepatic insulin resistance of high-fat diet (HFD)-induced diabetic mice. On the other hand, the associated molecular mechanisms underlying pancreatic beta-cell dysfunction remain unclear. This study examined the effects of ADLE on palmitate-induced lipotoxicity in a beta cell line of a rat origin, INS-1 cells. MATERIALS/METHODS: ADLE was administered to high-fat diet treated mice. The expression of apoptosis-related molecules was measured by Western blotting, and reactive oxidative stress generation and nitric oxide production were measured by DCH-DA fluorescence and a Griess assay, respectively. RESULTS: The administration of ADLE to HFD-induced diabetic mice reduced the hyperplasia, 4-hydroxynonenal levels, and the number of apoptotic cells while improving the insulin levels compared to the HFD group. Treatment of INS-1 cells with palmitate reduced insulin secretion, which was attenuated by the ADLE treatment. Furthermore, the ADLE treatment prevented palmitate-induced cell death in INS-1 cells and isolated islets by reducing the apoptotic signaling molecules, including cleaved caspase-3 and PARP, and the Bax/Bcl2 ratio. ADLE also reduced the levels of reactive oxygen species generation, lipid accumulation, and nitrite production in palmitate-treated INS-1 cells while increasing the ATP levels. This effect corresponded to the decreased expression of inducible nitric oxide synthase (iNOS) mRNA and protein. CONCLUSIONS: ADLE helps prevent lipotoxic beta-cell death in INS-1 cells and HFD-diabetic mice, suggesting that ADLE can be used to prevent or treat beta-cell damage in glucose intolerance during the development of diabetes.

Anti-inflammatory Effects of Houttuynia cordata and Lespedeza cuneata on Lipopolysaccharide-stimulated RAW264.7 Cells (마우스 대식세포 RAW264.7에서 어성초와 야관문의 항염증 효과)

  • Jeong Tae Kim;Chungwook Chung;Seong Ik Park;Man Hyo Lee;Joong Hee Roh;Ho Yong Sohn;Jong Sik Kim
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • In the present study, we prepared hot water extracts and the subsequent organic solvent fractions of methanol extracts of Houttuynia cordata (HC) and Lespedeza cuneata (LC), and investigated their anti-inflammatory effects on lipopolysaccharide-stimulated RAW264.7 cells. Among the treated samples, hexane, chloroform, and ethyl-acetate fractions of HC and LC inhibited nitric oxide (NO) production in a dose-dependent manner, and decreased inducible nitric oxide synthase (iNOS) protein expression. And, we analyzed the flavonoid contents of the ethyl-acetate fraction of HC and LC, and chose apigenin for the further experiments because apigenin was one of flavonoids commonly found in HC and LC. Apigenin dramatically inhibited NO production in a dose-dependent manner without affecting cell viability and decreased iNOS and cyclooxygenase-2 (COX-2) expression. In addition, apigenin suppressed the phosphorylation of p38 and Jun N-terminal kinase (JNK) indicating that apigenin exerts anti-inflammatory activity via the mitogen-activated protein kinase (MAPK) signaling pathway. Subsequently, we conducted RNA-sequencing analysis to detect differentially expressed genes upon apigenin treatment. Among the down-regulated genes, four cytokine genes (interleukin (IL)-1α, IL-1β, IL-6, and colony stimulating factor 2 (CSF2)) were selected for the further analysis, and the reduction of their expression by apigenin was confirmed with quantitative real-time polymerase chain reaction. Overall, our results suggest that Houttuynia cordata and Lespedeza cuneata have the anti-inflammatory effects and apigenin can be the one of key molecules responsible for their anti-inflammatory activities.

Enhancement of Anti-inflammatory Activity of Lactobacillus plantarum Fermented by Achyranthes japonica on Extraction Solvents (추출 용매에 따른 Lactobacillus plantarum 발효 우슬의 항염증 효과 증진)

  • Jo, Eun Sol;Woo, Young Min;Kim, Ok Ju;Jo, Min Young;Ahn, Mee Young;Lee, Jae-Hwa;Ha, Jong-Myung;Kim, Andre
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.145-150
    • /
    • 2019
  • In this study, we used extracts obtained from five different solvents (water, ethanol, hexane, ethyl acetate, butanol) of Achyranthes japonica (AJ) and also AJ fermented with Lactobacillus plantarum (LP) to confirm effects on the anti-inflammatory activity in RAW264.7 cells. Experiments of measuring nitric oxide (NO) and cytokine production were performed in lipopolysaccharide (LPS)-induced RAW264.7 cells, and the expression of both cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) was observed by a western blot method. The cytotoxicity of RAW264.7 was confirmed by the cell counting kit (CCK) assay at a concentration of $100{\mu}g/mL$, which has no toxicity. As a result of the inhibition of NO production, the inhibition rate of AJ-LP extracted with ethanol samples was about 74% higher than that of using the control group. Interleukin-6 (IL-6), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and Interleukin-$1{\beta}$ (IL-$1{\beta}$), which are inflammatory cytokines, also showed an excellent efficacy with inhibition rates of about 57, 70, and 74%, respectively. Comparing to the results of COX-2 and iNOS expression in the AJ group, the inhibition rate of 20-hydroxyecdysone was the highest than others. On the other hand, the COX-2 expression level of AJ-LP group decreased about 16% compared to that of the control group, and the iNOS expression level was also decreased about 7%. These results suggest that the extract of AJ fermented from L. plantarum can be used as an anti-inflammatory natural material.

NF-kB and AP-1-regulatory Mechanism of Buthus Martensi Karsch Herbal Acupuncture Solution on Inflammatory Cytokine-induced Human Chondrocytes Dysfunction

  • Cho, Jae-Yong;Kim, Kyung-Ho;Cho, Hyun-Seok;Lim, Dae-Jung;Hwang, Ji-Hye;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.61-72
    • /
    • 2006
  • Objectives : Human chondrocytes co-treated with Buthus martensi Karsch herbal acupuncture solution(BMK-HAS) extract produced significantly less NO compared with chondrocytes stimulated with $IL-1{\beta}$ alone Methods : Activation and translocation of and NF-kB DNA binding activity were determined by Western blotting and specific enzyme-linked immunosorbent assay. Results : The inhibition of NO production correlated with the suppression of induction and expression of nuclear factor-kB (NF-kB) and activation protein-1 (AP-1)-dependent gene. BMK-HAS inhibited the activation and translocation of NF-kB to the nucleus, indicating that BMK-HAS inhibits the $IL-1{\beta}-induced$ production of NO in human chondrocytes by interfering with the activation of NF-kB through a novel mechanism. In addition, BMK-HAS reduced prostaglandin E2 (PGE2)production in mouse peritoneal macrophages stimulated with lipopolysaccharide, whereas no influence on the activity of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) or cyclooxygenase-1 (COX-1) was observed. My data, therefore, suggest that BMK-HAS may be a therapeutically effective inhibitor of $IL-1{\beta}-induced$ inflammatory effects that are dependent on NF-kB activation in human OA chondrocytes. Conclusion : The results indicate that BMK-HAS exerts anti-inflammatory effects related to the inhibition of neutrophil functions and of NO and PGE2 production, which could be due to a decreased expression of iNOS and COX-2 through the transcription factors NF-kB and AP-1.

  • PDF

The Immunomodulatory Activity of Mori folium, the Leaf of Morus alba L., in RAW 264.7 Macrophages in Vitro

  • Kwon, Da Hye;Cheon, Ji Min;Choi, Eun-Ok;Jeong, Jin Woo;Lee, Ki Won;Kim, Ki Young;Kim, Sung Goo;Kim, Suhkmann;Hong, Su Hyun;Park, Cheol;Hwang, Hye-Jin;Choi, Yung Hyun
    • Journal of Cancer Prevention
    • /
    • v.21 no.3
    • /
    • pp.144-151
    • /
    • 2016
  • Background: Immunoregulatory elements have emerged as useful immunotherapeutic agents against cancer. In traditional medicine, Mori folium, the leaf of Morus alba L. (Moraceae), has been used for various medicinal purposes; however, the immunomodulatory effects have not been fully identified. We evaluated the immunoenhancing potential of water extract of Mori folium (WEMF) in murine RAW264.7 macrophages. Methods: RAW264.7 cells were treated with WEMF for 24 hours and cell viability was detected by an MTT method. Nitric oxide (NO) levels in the culture supernatants were assayed using Griess reagent. The productions of prostaglandin $E_2$ ($PGE_2$) and immune-related cytokines was measured using ELISA detection kits. The mRNA and protein expression levels of Inducible NO synthase, COX-2, and cytokines were assayed by reverse transcription-PCR and Western blotting, respectively. The effect of WEMF on phagocytic activity was measured using a Phagocytosis Assay Kit. Results: WEMF significantly stimulated the production of NO and $PGE_2$ as immune response parameters at noncytotoxic concentrations, which was associated with the increased expression of inducible NO synthase and COX-2. The release and expression of cytokines, such as $TNF-{\alpha}$, interleukin $(IL)-1{\beta}$, IL-6, and IL-10, were also significantly increased in response to treatment with WEMF. Moreover, WEMF promoted the macrophagic differentiation of RAW264.7 cells and the resulting phagocytosis activity. Conclusions: WEMF has the potential to modulate the immune function by regulating immunological parameters. Further studies are needed to identify the active compounds and to support the use of WEMF as an immune stimulant.

Anti-Inflammatory Effects of Ji-Pae-San Water Extract (지패산(芷貝散)의 항염증(抗炎症) 효능(效能)에 대한 연구(硏究))

  • Lee, Sang-Hyun;Park, Chan-Ki
    • Herbal Formula Science
    • /
    • v.16 no.1
    • /
    • pp.79-94
    • /
    • 2008
  • Although inflammatory mediators such as nitric oxide(NO) and pro-inflammatory cytokines are involved in host defense mechanism, these overproduction contributes to the pathogenesis of several diseases such as otitis media, hearing loss, periodontitis, bacterial sepsis, rheumatoid arthritis, chronic inflammation and autoimmune diseases. We investigate the anti-inflammatory effects of water extract from Ji-Pae-San(JPSWE) fomulated with Angelica dahurica plus Fritillaria Verticillata, Angelica dahurica(ADWE), and Fritillaria Verticillata(FUVE) in vitro and in vivo. Each extract inhibited the production of inflammatory mediators(NO, $IL-1{\beta}$, IL-6, $TNF-{\alpha}$, and prostaglandin $E_2$) and the expression of inducible NO synthase(iNOS) and cyclooxygenase-2(COX-2) in lipopolysaccharide(LPS)-stimulated RAW 264.7 macrophages in a dose-dependent manner. These inhibitory effects were synergistically increased by their combination. JPSWE also inhibited $TNF-{\alpha}$, $IL-1{\beta}$, IL-6. and $PGE_2$ production as well as COX activity in LPS-stimulated mice. Moreover, JPSWE significantly suppressed death by LPS-septic shock in mice(survival rate: 100%). These results suggest that Ji-Pae-San may be useful for therapeutic drugs against inflammatory immune diseases, probably by suppressing the production of inflammatory mediators.

  • PDF