Effect of Glutathione on Lead Induced Modulation of NO Synthesis in RAW 264.7 Cell

RAW 264.7 Cell에서 납에 의한 NO 생성의 조절에 미치는 Glutathione의 효과

  • Oh, Gyung-Jae (Department of Preventive Medicine and Public Health, Wonkwang University Medical School) ;
  • Kwon, Keun-Sang (Department of Preventive Medicine and Public Health, Chonbuk National University Medical School and Institute for Medical Sciences) ;
  • Yoon, Wook-Hee (Department of Preventive Medicine and Public Health, Chonbuk National University Medical School and Institute for Medical Sciences) ;
  • Shin, Sae-Ron (Department of Preventive Medicine and Public Health, Chonbuk National University Medical School and Institute for Medical Sciences)
  • 오경재 (원광대학교 의과대학 예방의학교실) ;
  • 권근상 (전북대학교 의과대학 예방의학교실 및 의과학연구소) ;
  • 윤욱희 (전북대학교 의과대학 예방의학교실 및 의과학연구소) ;
  • 신새론 (전북대학교 의과대학 예방의학교실 및 의과학연구소)
  • Published : 2002.12.01

Abstract

Objectives : To evaluate the elect of glutathione(GSH) on lead induced modulation of nitric oxide(NO) synthesis, and to examine how lead modulates NO production in macrophages. Methods : This study was observed in a culture of RAW 264.7 cells, which originated from a tumor in a Balb/c mouse that was induced by the Abelson murine leukemia virus. The compounds investigated were lead chloride, N-acetyl-cystein(NAC), and Buthionine Sulfoximine( BSO). Results : ATP synthesis in RAW 264.7 cells was unchanged by each lead concentration exposure in a dose dependent manner. The NO synthesis was decreased when exposed to lead($PbCl_2$) concentration $0.5{\mu}M$. The presence of $300{\mu}M$ NAC, used as a pretreatment in the culture medium, caused the recovery of the lead induced decrease in NO synthesis, but in the presence of $300{\mu}M$ BSO as a pretreatment, there was no recoverey. Pretreatment with NAC and BSO had no affect on ATP synthesis at any of the lead concentrations used. Conclusions : These results indicated that GSH has a protective effect toward lead toxicity, and suggested that the inhibition of NO production in macrophage due to lead toxicity may be related to cofactors of iNOS (inducible nitric oxide synthase)

Balb/c 마우스의 복강내에 Abelson leukemia virus (A-MuLV)를 주입하여 발생시킨 대식세포주 RAW 264.7 세포의 배양조건에 납과 NAC및 BSO를 첨가하여 세포생존율과 NO 및 ATP 생성량의 변화를 관찰한 결과, 납을 처리한 기본배양조건에서 RAW 264.7 세포의 생존율은 각 농도에서 차이가 없었으며 NO의 생성량은 $0.5{\mu}M$의 납농도에서부터 용량 의존적으로 감소하였으나 ATP의 생성량은 각 농도군에서 차이가 없었다. NAC을 전처리하고 납을 처리한 배양조건에서의 NO 및 ATP의 생성량은 대조군과 차이가 없었다. BSO를 전처리하고 납을 처리한 배양조건에서의 NO의 생성량은 납만 처리했을 때와 달리 각각의 농도군에서 대조군과 차이가 있었다. ATP생성량은 역시 차이가 없었다. 이상의 결과에서 납의 농도가 증가함에 따라 ATP의 생성량은 변화가 없으면서 NO가 감소하는 것을 볼 때, 납에 의한 대식세포에서 NO생성의 억제기전은 수은 및 카드뮴 등과 같이 미토콘드리아에 영향을 미쳐 ATP생성이 억제됨으로 L-arginine-NO경로에서 ATP를 필요로 하는 iNOS가 작용을 못하여 NO 생성이 저하되는 기전과는 다른 기전이 있음을 보여준다. 또한 iNOS의 조효소인 세포내 GSH를 증가시키는 NAC을 전처리했을 때 NO의 생성량이 대조군 수준으로 회복되고 세포내 GSH를 감소시키는 BSO를 전처리했을 때는 오히려 NO의 생성량에 영향을 미치지 않는 납의 농도에서조차 NO 생성의 감소가 일어난 것으로 볼 때 GSH는 대식세포에서 NO생성을 저하시키는 납의 독성에 보호작용이 있음을 확인할 수 있었다.

Keywords

References

  1. Hammond PB, Dietrich KN. Lead exposure in early life: Health consequence. Rev Environ Contam Toxicol 1990; 115: 91-124
  2. Lochitch, G. Perspectives on lead toxicity. Clin Biochem 1993; 26: 371-381 https://doi.org/10.1016/0009-9120(93)90113-K
  3. Klassen C.D. The basic science of poison. Casarett and Dull's Toxicology. 5th ed. 1995. p. 703-709
  4. Klassen. CD. Heavy metals and heavymetal antagonists. In Goodman and Gilman's The Pharmacological Basis of Therapeutics.(A. G. Gilman, T. W. Tall, A. S. Nies, and P. Taylor, Eds.). 8th ed. 1990. p. 1592-1614 Pergamon. Elmsford, NY.
  5. Keogh, J. P. Lead In Hazardous Materials Toxicology-Clinical Principles of Environmental Health(J. B. sullivan. Jr., and G. G. Krieger, Eds.), 1992. p. 834-844 Williams & Wilkings. Baltimore.
  6. Sachs. H. K. Intercurrent infections in lead poisoning. Am J Dis Child 1978; 32: 315-316
  7. Ewers. U., Stiller-Winkler, R., Idel, H. Serum immunoglobulin, complement C3, and salivary IgA levels in lead workers. Environ Res 1982; 29: 351-35 https://doi.org/10.1016/0013-9351(82)90036-6
  8. Dean, J.H., Murray, M.I., Ward, E.C. Toxic responses of the immune system. The Basic Science of Poisons. 1996. 3rd ed. p. 245-309
  9. Govema. M., Valentino. M., Visona, I. In vitro impairment of human granulocyte . function by lead. Arch Toxicol 1987; 59; 421-425 https://doi.org/10.1007/BF00316208
  10. Kowolenko, M., McCabe, M. J., Lawrence. D. A. Metal induced alternations of immunity. Int Clinl Immunotoxicol 1992; 401-409
  11. Nussler, A. K., Billar, T. R. Inflammation immunoregulation and inducible nitric oxide synthase. J Leuk Biol 1993; 54: 171-178
  12. Dalton, D. K.,Pitts-Meek, S.,Keshav, S., Figari, I. S., Bradley, A., and Stewart, T. A. Multiple defects of immune cell function in mice with disrupted interferon-ygenes. Science 1993; 259: 1739-1742 https://doi.org/10.1126/science.8456300
  13. L. Tian and D. A. Lawrence. Metalinduced modulation of nitric oxide production in vitro by murine macrophages: lead, nickel, and cobalt utilize diffenent mechanisms. Toxciol Appl Pharmacol 1996; 141:540-547 https://doi.org/10.1006/taap.1996.0320
  14. Snyder S.H., Bredt D.S. Biological roles of nitric oxide. Sci Am May 1992; 28-35
  15. Bartholomew B. A rapid method for the assay of nitrate in urine using the nitrate reductase enzyme of Escherichia coli. Food Chem Toxicol 1984; 22: 541-549 https://doi.org/10.1016/0278-6915(84)90224-2
  16. Hibbs J .B., Vavrin Z, Taintor R.R., Rachlin E.M. Nitiric oxide: A cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 1988; 157: 87-94 https://doi.org/10.1016/S0006-291X(88)80015-9
  17. Hibbs J.B., Vavrin Z, Taintor R.R. Larginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 1987; 138: 550-565
  18. Hibbs J.B., Vavrin Z, Taintor R.R. Macrophage cytotoxicity: Role for Larginine deaminase and imino nitrogen oxidation to nitrite. Science 1987; 235: 473-476 https://doi.org/10.1126/science.2432665
  19. Meister A. Selective modification of glutathione metabolism. Science 1983; 220: 472-477 https://doi.org/10.1126/science.6836290
  20. Singhal RH, Anderson ME, Meister A. Glutathione, a first line of defense against cadmium toxicity. FASEB J 1987; 1: 220-223
  21. Guillermina G, Adriana TM, Monica EM. The implication of renal glutathione levels in mercury chloride nephrotoxicity. Toxicology 1989; 58: 187-195 https://doi.org/10.1016/0300-483X(89)90008-5
  22. Naganuma A, Anderson ME, Meister A. Cellular glutathione as a determinant of sensitivity to mercury chloride toxicity. Biochem Pharmacol 1990; 40: 693-697 https://doi.org/10.1016/0006-2952(90)90303-3
  23. Tanaka T, Naganuma A, Imura N. Role of gamma-glutamyl-transpeptidase in renal uptake and toxicity of inorganic mercury in mice. Toxicology 1990; 60: 187-198 https://doi.org/10.1016/0300-483X(90)90142-4
  24. Hon W.M., Chhatwal Vl.S., Khoo H. E., Moochhala S.M. Histochemical method for detecting nitric oxide synthase activity in cell cultures. Biotechnic Histochemistry 1997; 72(1): 29-32 https://doi.org/10.3109/10520299709082208
  25. Wang W.W., Jenkinson C.P., Griscavage JM., Kern RM., Arabolos N.S., Byrins R.E., Cederbaum S.D., Ignarro L.J. Coinduced of arginase and nitric oxide synthase in murine macrophages activated by lipopolysaccharide.Biochem Biophys Res Commum 1995; 210: 1009-1016 https://doi.org/10.1006/bbrc.1995.1757
  26. Phillips HJ. Dye exclusion tests for cell viability. In Kruse PR, Patterson MK(Eds.), Tissue Culture Method and Application. Academic Press, New York. 1973,pp.406-408
  27. Lawrence, D.A. In vivo and in vitro dffects of lead on humoral and cellmediated immunity. Infect Immun 1981; 31: 136-143
  28. Kowolenko , M., Tracy, L., and Lawrence, D. A. Early effects of lead on bone marrow cell responsiveness in mice challenged with Listeria monocytogenes. Fundam. Appl. Toxicol 1991; 17:75-82 https://doi.org/10.1093/toxsci/17.1.75
  29. Hemphill, F., Kaerberle , L. M., and Buck, W. B. Lead suppression of mouse resistance to Salmonella typhimurium. Science 1971; 172: 1031-1033 https://doi.org/10.1126/science.172.3987.1031
  30. Cook, I. A., Hoffman, E. O., and Di Luzio , N. R. Influence of lead and cadmium on the susceptibility of rats to bacterial challenge. Proc Exp Bioi Med 1975; 150: 741-747 https://doi.org/10.3181/00379727-150-39117
  31. Kaufmann, S. H. E. Immunity to intracellular bacteria. In Fundamental Immunology; 3rd ed. 1993.p. 1251-1286
  32. Julian P. Keogh, Britta Steffen, ClausPeter Siegers. Cytotoxicity of heavy metal in the human small intestinal epithelial cell line 1-407. Toxicol Environ Health 1994; 43: 351-359 https://doi.org/10.1080/15287399409531926
  33. Ercal N, Treeratphan P, Hammond TC, Matthews RH, Grannemann NH, Spitz DR. In vivo indices of oxidative stress in lead-exposed C57BL/6 mice are reduced by treatment with meso-2,3-dimercaptosuccinic acid or N-acetylcysteine. Free Radic Biol Med 1996; 21(2): 157-61 https://doi.org/10.1016/0891-5849(96)00020-2
  34. Manisha Pande, Ashish Mehta, Bhagwat P, Pant and Swaran r.s. Rora. Combined administration of a chelating agent and an antioxidant in the prevention and treatment of acute lead intoxication in rats. Environ Toxicol Pharmacol 2001; 9: 173-184 https://doi.org/10.1016/S1382-6689(01)00064-3
  35. Green S.J., Meltzer M.S., Hibbs I.B., Nacy C.A. Activated macrophages destroy intracellular Leishmania major amastigtes by an L-arginine-dependent killing mechanism. J Immunol 1990; 144: 278-283
  36. Youm JR. A Study on Factors Related to NO Synthesis by Mercurial Compounds in the EMT-6 cell. Korean J Occupational Medicine 1997; 9(1): 122-130 (Korean)
  37. Oh GJ, Koh DH, Youm JR. ${NO}_2$- and ATP synthesis in the EMT-6 cell stimulatedby mercury chloride. Korean J Prev Med 1996; 29(3) : 495-505 (Korean)
  38. Stuehr. D. J., Kwon. N. S., Nathan, C. F. FAD and GSH participate in macrophage synthesis of nitric oxide. Biochem Biophys Res Commun 1990; 168: 558-565 https://doi.org/10.1016/0006-291X(90)92357-6