• Title/Summary/Keyword: Inducible nitric oxide

Search Result 1,202, Processing Time 0.027 seconds

Deficiency of iNOS Does Not Prevent Isoproterenol-induced Cardiac Hypertrophy in Mice

  • Cha, Hye-Na;Hong, Geu-Ru;Kim, Yong-Woon;Kim, Jong-Yeon;Dan, Jin-Myoung;Park, So-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.153-159
    • /
    • 2009
  • We investigated whether deficiency of inducible nitric oxide synthase (iNOS) could prevent isoproterenol-induced cardiac hypertrophy in iNOS knockout (KO) mice. Isoproterenol was continuously infused subcutaneously (15 mg/kg/day) using an osmotic minipump. Isoproterenol reduced body weight and fat mass in both iNOS KO and wild-type mice compared with saline-infused wild-type mice. Isoproterenol increased the heart weight in both iNOS KO and wild-type mice but there was no difference between iNOS KO and wild-type mice. Posterior wall thickness of left ventricle showed the same tendency with heart weight. Protein level of iNOS in the left ventricle was increased in isoproterenol-infused wild-type mice. The gene expression of interleukin-6 (IL-6) and transforming growth factor-${\beta}$ (TGF-${\beta}$) in isoproterenol-infused wild-type was measured at 2, 4, 24, and 48-hour and isoproterenol increased both IL-6 (2, 4, 24, and 48-hour) and TGF-${\beta}$ (4 and 24-hour). Isoproterenol infusion for 7 days increased the mRNA level of IL-6 and TGF-${\beta}$ in iNOS KO mice, whereas the gene expression in wild-type mice was not increased. Phosphorylated form of extracellular signal-regulated kinases (pERK) was also increased by isoproterenol at 2 and 4-hour but was not increased at 7 days after infusion in wild-type mice. However, the increased pERK level in iNOS KO mice was maintained even at 7 days after isoproterenol infusion. These results suggest that deficiency of iNOS does not prevent isoproterenol-induced cardiac hypertrophy and may have potentially harmful effects on cardiac hypertrophy.

Neuroprotection of Dexmedetomidine against Cerebral Ischemia-Reperfusion Injury in Rats: Involved in Inhibition of NF-κB and Inflammation Response

  • Wang, Lijun;Liu, Haiyan;Zhang, Ligong;Wang, Gongming;Zhang, Mengyuan;Yu, Yonghui
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2017
  • Dexmedetomidine is an ${\alpha}2$-adrenergic receptor agonist that exhibits a protective effect on ischemia-reperfusion injury of the heart, kidney, and other organs. In the present study, we examined the neuroprotective action and potential mechanisms of dexmedetomidine against ischemia-reperfusion induced cerebral injury. Transient focal cerebral ischemia-reperfusion injury was induced in Sprague-Dawley rats by middle cerebral artery occlusion. After the ischemic insult, animals then received intravenous dexmedetomidine of $1{\mu}g/kg$ load dose, followed by $0.05{\mu}g/kg/min$ infusion for 2 h. After 24 h of reperfusion, neurological function, brain edema, and the morphology of the hippocampal CA1 region were evaluated. The levels and mRNA expressions of interleukin-$1{\beta}$, interleukin-6 and tumor nevrosis factor-${\alpha}$ as well as the protein expression of inducible nitric oxide synthase, cyclooxygenase-2, nuclear factor-${\kappa}Bp65$, inhibitor of ${\kappa}B{\alpha}$ and phosphorylated of ${\kappa}B{\alpha}$ in hippocampus were assessed. We found that dexmedetomidine reduced focal cerebral ischemia-reperfusion injury in rats by inhibiting the expression and release of inflammatory cytokines and mediators. Inhibition of the nuclear factor-${\kappa}B$ pathway may be a mechanism underlying the neuroprotective action of dexmedetomidine against focal cerebral I/R injury.

Anti-inflammatory Effects of the Methanol Extract of Polytrichum Commune via NF-κB Inactivation in RAW 264.7 Macrophage Cells

  • Cho, Woong;Park, Seung-Jae;Shin, Ji-Sun;Noh, Young-Su;Cho, Eu-Jin;Nam, Jung-Hwan;Lee, Kyung-Tae
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.385-393
    • /
    • 2008
  • As an attempt to search for bioactive natural products exerting anti-inflammatory activity, we evaluated the effects of the methanol extract of Polytrichum commune Hedw (PCM) (Polytrichaceae) on lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$) and pro-inflammatory cytokines release in murine macrophage cell line RAW 264.7. PCM potently inhibits the production of NO, $PGE_2$, tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-6. Consistent with these results, PCM also concentration-dependently inhibited LPS-induced inducible NO synthase (iNOS) and cyclooxygase (COX)-2 at the protein levels, and iNOS, COX-2, TNF-$\alpha$ and IL-6 at the mRNA levels without an appreciable cytotoxic effect on RAW 264.7 macrophag cells. Furthermore, PCM inhibited LPS-induced nuclear factor-kappa B (NF-$\kappa$B) activation as determined by NF-$\kappa$B reporter gene assay, and this inhibition was associated with a decrease in the nuclear translocation of p65 and p50 NF-$\kappa$B. Taken together, these results suggest that PCM may play an anti-inflammatory role in LPS-stimulated RAW 264.7 macrophages through the inhibitory regulation of iNOS, COX-2, TNF-$\alpha$ and IL-6 via NF-$\kappa$B inactivation.

Inhibitory Effect of Alopecurus aequalis Sobol Ethanol Extracts on LPS-induced Inflammatory Response in RAW 264.7 Cells (LPS로 유도한 RAW 264.7 세포의 염증반응에서 뚝새풀 에탄올 추출물의 억제 효과)

  • Jung, Ho Kyung;Kang, Byoung Man;Jang, Ji Hun;Ahn, Byung Kwan;Yeo, Jun Hwan;Jung, Won Seok;Cho, Jung Hee;Kuk, Yong In;Hyun, Kyu Hwan;Cho, Hyun Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.2
    • /
    • pp.98-104
    • /
    • 2014
  • In the present study, we investigated the anti-inflammatory effects by Alopecurus aequalis Sobol on the lipopolysaccharide (LPS)-induced nitric oxide (NO) production by RAW 264.7 cell line. Consistent with these observations, DS reduced the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein levels in a concentration-dependent manner. In addition, the release of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) were also reduced by DS. Moreover, LPS increased expression phosphorylation of $I{\kappa}B{\alpha}$, but DS showed inhibitory effect by reducing LPS-inducible p-$I{\kappa}B{\alpha}$ expression level. These results suggest that the down regulation of iNOS, COX-2, TNF-${\alpha}$, and IL-6 expression by DS are achieved by the downregulation of NF-${\kappa}B$ activity, a transcription factor necessary for pro-inflammatory mediators, and that is also responsible for its anti-inflammatory effects.

Anti-Inflammatory Effects of Haliotidis Concha (석결명(石決明)의 항염증효과(抗炎症效果))

  • Moon, Soo-Young;Kim, Young-Woo;Kim, Sang-Chan
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.26 no.4
    • /
    • pp.70-80
    • /
    • 2013
  • Objectives : Haliotidis Concha has been used to treat various human diseases such as liver dysfunction and inflammatory disorder. Although it has been shown the effects of Haliotidis Concha on the various diseases, it has almost not been studied about the anti-inflammatory effects of the Haliotidis Concha and its mechanisms. Methods : This research investigated the effects of the Haliotidis Concha ethanol extract (HCE) on the production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) as well as tumor necrosis factor-alpha (TNF-${\alpha}$). The protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were assayed by immunoblot analyses, and the productions of NO, $PGE_2$ and TNF-${\alpha}$ were assessed by ELISA. Results : Haliotidis Concha decreased the production of NO and $PGE_2$, and inhibited the expression iNOS and COX-2 proteins in a concentration-dependent manner in LPS-treated Raw 264.7 cells. HCE suppressed the ability of LPS to activate the signaling pathways of nuclear factor kappa B (NF-${\kappa}B$) as indicated by HCE inhibited nuclear NF-${\kappa}B$ level and I-${\kappa}B{\alpha}$ phosphorylation. Also, HCE inhibited mitogen-activated protein kinases (MAPKs). Conclusions : HCE repressed the production of LPS-inducible NO, $PGE_2$ and TNF-${\alpha}$, which may be mediated by inhibition of NF-${\kappa}B$ translocation. This study suggest the use for the treatment of acute inflammatory disorders.

Inhibition of TNF-α-mediated NF-κB Transcriptional Activity in HepG2 Cells by Dammarane-type Saponins from Panax ginseng Leaves

  • Song, Seok-Bean;Tung, Nguyen Huu;Quang, Tran Hong;Ngan, Nguyen Thi Thanh;Kim, Kyoon-Eon;Kim, Young-Ho
    • Journal of Ginseng Research
    • /
    • v.36 no.2
    • /
    • pp.146-152
    • /
    • 2012
  • Panax ginseng (PG) is a globally utilized medicinal herb. The medicinal effects of PG are primarily attributable to ginsenosides located in the root and leaf. The leaves of PG are known to be rich in various bioactive ginsenosides, and the therapeutic effects of ginseng extract and ginsenosides have been associated with immunomodulatory and anti-inflammatory activities. We examined the effect of PG leaf extract and the isolated ginsenosides, on nuclear factor (NF)-${\kappa}B$transcriptional activity and target gene expression by applying a luciferase assay and reverse transcription polymerase chain reaction in tumor necrosis factor (TNF)-${\alpha}$-treated hepatocarcinoma HepG2 cells. Air-dried PG leaf extract inhibited TNF-${\alpha}$-induced NF-${\kappa}B$transcription activity and NF-${\kappa}B$-dependent cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) gene expression more efficiently than the steamed extract. Of the 10 ginsenosides isolated from PG leaves, Rd and Km most significantly inhibited activity in a dose-dependent manner, with $IC_{50}$ values of $12.05{\pm}0.82$ and $8.84{\pm}0.99\;{\mu}M$, respectively. Furthermore, the ginsenosides Rd and Km inhibited the TNF-${\alpha}$-induced expression levels of the COX-2 and iNOS gene in HepG2 cells. Air-dried leaf extracts and their chemical components, ginsenoside Rd and Km, are involved in the suppression of TNF-${\alpha}$-induced NF-${\kappa}B$ activation and NF-${\kappa}B$-dependent iNOS and COX-2 gene expression. Consequently, air-dried leaf extract from PG, and the purified ginsenosides, have therapeutic potential as anti-inflammatory.

Anti-Inflammatory Effects of Bee Venom on Phthalic Anhydride-Induced Atopic Dermatitis

  • Oh, Myung Jin;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.37 no.1
    • /
    • pp.42-48
    • /
    • 2020
  • Background: Atopic dermatitis (AD) is a chronic inflammatory condition which can be studied using phthalic anhydride (PA) to induce AD. Anti-inflammatory properties of bee venom (BV) wereinvestigated to determine whether it may be a useful treatment for AD. Methods: AD was induced by applying to pical PA to 8-week-old HR-1 mice (N = 50), then treating with (0.1, 0.25, and 0.5 ㎍) or without topical BV. Body weight, ear thickness histology, enzyme-linked immune sorbent assay (serum IgE concentrations), Western blot analysis [inducible nitric oxide synthase, cyclooxygenase-2, IκB-α, phospho-IκB-α, c-Jun N-terminal kinase (JNK), phospho-JNK, p38, phospho-p38, extra cellular signal-regulated kinase (ERK), and phospho-ERK], and the pull down assay for immunoblotting (p50), were used to measure inflammatory mediators. Results: PA + BV (0.1, 0.25, and 0.5 ㎍) significantly decreased ear thickness without altering body weight. IgE concentrations decreased in the PA + BV (0.5 ㎍)-treated groups compared with PAtreatment. Tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, cyclooxygenase-2, phospho-IκB-α, phospho-JNK, p38, phospho-p38, and phospho-ERK, all decreased following treatment with PA + BV compared with the PA-treatment alone. p50 was upregulated in the PA + BV-treated groups compared with the PA-treated group. Furthermore, the number of mast cells decreased in the PA + BV-treated groups compared with the PA-treated group. Epidermal thickness was significantly lower in the PA + BV-treated group compared with PA treatment alone. Conclusion: BV maybe a useful anti-inflammatory treatment for AD.

Establishment of In vitro Detection System for iNOS Expression and the Verification of Suppressive Effect by Pine Needle Extract (iNOS 발현 검출을 위한 in vitro 시스템의 확립 및 적송잎 추출물에 의한 저해효과 검증)

  • Kim, Nam-Young;Jang, Hye-Ji;Lee, Dong-Geun;Jang, Min-Kyung;Lee, Seung-Woo;Jeon, Myong-Je;Kim, Mi-Hyang;Kim, Sung-Gu;Lee, Sang-Hyeon
    • KSBB Journal
    • /
    • v.26 no.2
    • /
    • pp.172-176
    • /
    • 2011
  • This study was aimed to verify suppressive effect of pine-needle extract on lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expression. In order to evaluate suppressive effect on iNOS expression, RAW 264.7 cells were stably transfected using an iNOS promoterluciferase reporter plasmid yielding RAW 264.7/pGL2-NeomiNOS_ pro11 cells. Established in vitro detection system revealed to diminish LPS-induced iNOS expression by 0.1~500 ${\mu}g/mL$ of saponin at the concentration-dependant manner. Pine needle extract also diminished LPS-induced iNOS expression to 92 and 88% at 500 and 50 ${\mu}g/mL$, respectively. These results suggest that the in vitro detection system developed here could be useful for the verification of suppressive materials on iNOS expression and pine needle extract could be used for the development of functional foods.

Evaluation of the Effectiveness and Safety of Zanthoxylum piperitum Leaf Extract against Mild Degenerative Osteoarthritis of Knee: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial (경증의 퇴행성 슬관절염에 대한 초피나무잎 추출물의 유효성 및 안전성 평가: 무작위 배정, 이중맹검, 위약대조 임상연구)

  • Jeong, Ji-Hong;Lee, Soo-Hwan;Yoon, Hong-Ryoul;Kim, Soon-Joong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.31 no.4
    • /
    • pp.167-191
    • /
    • 2021
  • Objectives Degenerative osteoarthritis of knee is a disease with an increasing number of patients worldwide and its general treatments have some side effects. Methods 102 subjects were classified into test group 1, test group 2, and control group, and clinical trial products were taken for 12 weeks. The effectiveness was evaluated with changes in visual analogue scale, Korean-Western Ontario and McMaster Universities Osteoarthritis Index, inducible nitric oxide synthase, and cyclooxygenase-2. Results Both test group 1 and test group 2 were effective in reducing the pain of degenerative osteoarthritis of knee, and only test group 2 was effective in improving the ability to perform daily activities. No clinically significant changes were observed for any safety parameter. Conclusions In conclusion, the data of this study indicate that Zanthoxylum piperitum leaf extract has effectiveness and safety against mild degenerative osteoarthritis of knee.

Anti-inflammatory Effects of Kiyomi (Citrus unshiu × C. sinensis) Leaf Ethanol Extract Via the Regulation of NF-𝜅B and MAPKs in LPS Induced RAW 264.7 Cells (청견 잎 에탄올 추출물의 NF-𝜅B와 MAPK 조절을 통한 항염증 효과)

  • Chung-Mu Park;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.3
    • /
    • pp.159-169
    • /
    • 2023
  • Purpose : Though other Citrus spp. have reported their anti-inflammatory and antioxidative activities in previous studies, the biological activity of Kiyomi (Citrus unshiu × C. sinensis) has not been reported yet. Therefore, this study attempted to analyze the anti-inflammatory mechanisms of Kiyomi leaf ethanol extract (KLEE) in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Methods : The cytotoxic effect of KLEE in RAW 264.7 cells was determined by WST-1 assay. Bacterial endotoxin, the concentration of nitric oxide (NO) was analyzed by the Griess reaction. In addition, Western blot analysis was applied to measure the protein expression level of inducible NO synthase (iNOS). The phosphorylated status of the critical inflammatory transcription factor, nuclear factor (NF)-𝜅B, and its upstream signaling molecules, phosphoinositide 3-kinase (PI3K)/Akt as well as mitogen-activated protein kinases (MAPKs), were also measured by Western blot analysis. Results : KLEE was not cytotoxic up to a concentration of 200 ㎍/㎖, and protein expression levels of iNOS and cyclooxygenase (COX)-2, enzymes that counteract NO and prostaglandin (PG) E2 production, were inhibited by KLEE treatment. The phosphorylated status of PI3K/Akt as well as MAPKs including extracellular regulated kinase (ERK), c-jun NH2kinase (JNK), and p38, were significantly attenuated by KLEE treatment in LPS stimulated RAW 264.7 cells. Moreover, one of phase II enzymes, heme oxygenase (HO)-1 which has known for its anti-inflammatory capacity, was strongly induced by KLEE treatment. Conclusion : Consequently, KLEE treatment significantly attenuated the production of NO as well as the expression levels of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells. The inflammatory transcription factor, NF-𝜅B, as well as its upstream signaling molecules, PI3K/Akt and MAPKs, were also diminished by KLEE treatment with statistical significance in LPS-stimulated RAW 264.7 cells. These results suggest that KLEE might be a promising candidate for the attenuation of inflammatory disorders.