• Title/Summary/Keyword: Indoor mobile robot

Search Result 292, Processing Time 0.026 seconds

Indoor Environment Recognition of Mobile Robot Using SVR (SVR을 이용한 이동로봇의 실내환경 인식)

  • Shim, Jun-Hong;Choi, Jeong-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.119-125
    • /
    • 2010
  • This paper proposes a new solution about physical problem of autonomous mobile robots system using ultrasonic sensors. An mobile robot uses several sensors for recognition of its circumstance. However, such sensor data are not accurate all the time. A means of removing the noise that sensor data contains constantly, It is possible for simulation to estimate its circumstance based on ultrasonic sensor data by learning algorithm SVR(Support Vector Regression). To use SVR, it is being selected parameter and kernel which are the component of SVR. Selecting the component of SVR, the most accurate parameter data was selected through the tests because it is not existed determined data. In addition, choosing the kernel uses RBF(Radial Basis Function) kernel which is the most generalized. This paper proposes SVR based algorithm to compensate for the above demerits of ultrasonic sensor through the experimentation under three different environments.

An Approach for Localization Around Indoor Corridors Based on Visual Attention Model (시각주의 모델을 적용한 실내 복도에서의 위치인식 기법)

  • Yoon, Kook-Yeol;Choi, Sun-Wook;Lee, Chong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.93-101
    • /
    • 2011
  • For mobile robot, recognizing its current location is very important to navigate autonomously. Especially, loop closing detection that robot recognize location where it has visited before is a kernel problem to solve localization. A considerable amount of research has been conducted on loop closing detection and localization based on appearance because vision sensor has an advantage in terms of costs and various approaching methods to solve this problem. In case of scenes that consist of repeated structures like in corridors, perceptual aliasing in which, the two different locations are recognized as the same, occurs frequently. In this paper, we propose an improved method to recognize location in the scenes which have similar structures. We extracted salient regions from images using visual attention model and calculated weights using distinctive features in the salient region. It makes possible to emphasize unique features in the scene to classify similar-looking locations. In the results of corridor recognition experiments, proposed method showed improved recognition performance. It shows 78.2% in the accuracy of single floor corridor recognition and 71.5% for multi floor corridors recognition.

Topological Mapping and Navigation in Indoor Environment with Invisible Barcode (바코드가 있는 가정환경에서의 위상학적 지도형성 및 자율주행)

  • Huh, Jin-Wook;Chung, Woong-Sik;Chung, Wan-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1124-1133
    • /
    • 2006
  • This paper addresses the localization and navigation problem using invisible two dimensional barcodes on the floor. Compared with other methods using natural/artificial landmark, the proposed localization method has great advantages in cost and appearance, since the location of the robot is perfectly known using the barcode information after the mapping is finished. We also propose a navigation algorithm which uses the topological structure. For the topological information, we define nodes and edges which are suitable for indoor navigation, especially for large area having multiple rooms, many walls and many static obstacles. The proposed algorithm also has an advantage that errors occurred in each node are mutually independent and can be compensated exactly after some navigation using barcode. Simulation and experimental results. were performed to verify the algorithm in the barcode environment, and the result showed an excellent performance. After mapping, it is also possible to solve the kidnapped case and generate paths using topological information.

Landmark based Localization System of Mobile Robots Considering Blind Spots (사각지대를 고려한 이동로봇의 인공표식기반 위치추정시스템)

  • Heo, Dong-Hyeog;Park, Tae-Hyoung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.156-164
    • /
    • 2011
  • This paper propose a localization system of indoor mobile robots. The localization system includes camera and artificial landmarks for global positioning, and encoders and gyro sensors for local positioning. The Kalman filter is applied to take into account the stochastic errors of all sensors. Also we develop a dead reckoning system to estimate the global position when the robot moves the blind spots where it cannot see artificial landmarks, The learning engine using modular networks is designed to improve the performance of the dead reckoning system. Experimental results are then presented to verify the usefulness of the proposed localization system.

Three-dimensional Map Construction of Indoor Environment Based on RGB-D SLAM Scheme

  • Huang, He;Weng, FuZhou;Hu, Bo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.45-53
    • /
    • 2019
  • RGB-D SLAM (Simultaneous Localization and Mapping) refers to the technology of using deep camera as a visual sensor for SLAM. In view of the disadvantages of high cost and indefinite scale in the construction of maps for laser sensors and traditional single and binocular cameras, a method for creating three-dimensional map of indoor environment with deep environment data combined with RGB-D SLAM scheme is studied. The method uses a mobile robot system equipped with a consumer-grade RGB-D sensor (Kinect) to acquire depth data, and then creates indoor three-dimensional point cloud maps in real time through key technologies such as positioning point generation, closed-loop detection, and map construction. The actual field experiment results show that the average error of the point cloud map created by the algorithm is 0.0045m, which ensures the stability of the construction using deep data and can accurately create real-time three-dimensional maps of indoor unknown environment.

A loop closing scheme using UWB based indoor positioning technique (UWB 기반 실내 측위 기술을 활용한 루프 클로징 기법)

  • Hyunwoo You;Jungkyun Lee;Somi Nam;Juyeon Lee;Yoonseo Lee;Minsung Kim;Hong Min
    • Smart Media Journal
    • /
    • v.12 no.4
    • /
    • pp.41-46
    • /
    • 2023
  • UWB is a type of technology used for indoor positioning and is characterized by higher accuracy than RSSI-based schemes. Mobile equipment operating based on ROS can monitor the environment around the equipment using lidar and cameras. When applying the loop closing technique to determine the starting position in this monitoring process, the existing method has a problem of low accuracy because the closing operation occurs only when there are feature points on the image. In this paper, to solve this problem, we designed a system that increases the accuracy of loop closing work by providing location information by mounting a UWB tag on a mobile device. In addition, the accuracy of the UWB-based indoor positioning system was evaluated through experiments, and it was verified that it could be used for loop closing techniques.

Landmark recognition in indoor environments using a neural network (신경회로망을 이용한 실내환경에서의 주행표식인식)

  • 김정호;유범재;오상록;박민용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.306-309
    • /
    • 1996
  • This paper presents a method of landmark recognition in indoor environments using a neural-network for an autonomous mobile robot. In order to adapt to image deformation of a landmark resulted from variations of view-points and distances, a multi-labeled template matching(MLTM) method and a dynamic area search method(DASM) are proposed. The MLTM is. used for matching an image template with deformed real images and the DASM is proposed to detect correct feature points among incorrect feature points. Finally a feed-forward neural-network using back-propagation algorithm is adopted for recognizing the landmark.

  • PDF

A development of PSD sensor system for navigation and map building in the indoor environment

  • Jeong, Tae-Cheol;Lee, Chang-Hwan;Park, Jea-Yong;Hyun, Woong-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.724-728
    • /
    • 2005
  • This paper represents a development of a range finder sensor module for indoor 2-D mapping and modified Hough transformation for map building. A range finder sensor module has been developed by using optic PSD (Position Sensitive Detector) sensor array at a low price. While PSD sensor is cost effective and light weighting, it has switching noise and white noise. To remove these noises, we propose a heuristic filter. For line-based map building, also we proposed advanced Hough transformation and navigation algorithm. Some experiments were illustrated for the validity of the developed system.

  • PDF

SLAM with Visually Salient Line Features in Indoor Hallway Environments (실내 복도 환경에서 선분 특징점을 이용한 비전 기반의 지도 작성 및 위치 인식)

  • An, Su-Yong;Kang, Jeong-Gwan;Lee, Lae-Kyeong;Oh, Se-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.40-47
    • /
    • 2010
  • This paper presents a simultaneous localization and mapping (SLAM) of an indoor hallway environment using Rao-Blackwellized particle filter (RBPF) along with a line segment as a landmark. Based on the fact that fluent line features can be extracted around the ceiling and side walls of hallway using vision sensor, a horizontal line segment is extracted from an edge image using Hough transform and is also tracked continuously by an optical flow method. A successive observation of a line segment gives initial state of the line in 3D space. For data association, registered feature and observed feature are matched in image space through a degree of overlap, an orientation of line, and a distance between two lines. Experiments show that a compact environmental map can be constructed with small number of horizontal line features in real-time.

A Simple Framework for Indoor Monocular SLAM

  • Nguyen, Xuan-Dao;You, Bum-Jae;Oh, Sang-Rok
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.62-75
    • /
    • 2008
  • Vision-based simultaneous localization and map building using a single camera, while compelling in theory, have not until recently been considered extensive in the practical realm of the real world. In this paper, we propose a simple framework for the monocular SLAM of an indoor mobile robot using natural line features. Our focus in this paper is on presenting a novel approach for modeling the landmark before integration in monocular SLAM. We also discuss data association improvement in a particle filter approach by using the feature management scheme. In addition, we take constraints between features in the environment into account for reducing estimated errors and thereby improve performance. Our experimental results demonstrate the feasibility of the proposed SLAM algorithm in real-time.