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A Simple Framework for Indoor Monocular SLAM

Xuan-Dao Nguyen, Bum-Jae You, and Sang-Rok Oh

Abstract: Vision-based simultaneous localization and map building using a single camera, while
compelling in theory, have not until recently been considered extensive in the practical realm of
the real world. In this paper, we propose a simple framework for the monocular SLAM of an
indoor mobile robot using natural line features. Our focus in this paper is on presenting a novel
approach for modeling the landmark before integration in monocular SLAM. We also discuss
data association improvement in a particle filter approach by using the feature management
scheme. In addition, we take constraints between features in the environment into account for
reducing estimated errors and thereby improve performance. Our experimental results
demonstrate the feasibility of the proposed SLAM algorithm in real-time.

Keywords: Bearing only SLAM, localization, monocular.

1. INTRODUCTION

A map is a spatial model of the environment, which
is essential for a mobile robot to perform its tasks.
Therefore, the ability for a robot to autonomously
build its own map while localizing itself (SLAM) has
received much attention recently. Regarding
uncertainty in positions and observed features as well
as data association, a probabilistic framework is
necessary for combining and optimizing those things
over time.

Conventionally, most work on SLAM has focused
predominantly on active range sensors such as lasers
for data association. Laser sensors have high depth
resolution providing accurate measurements of
landmark positions but are expensive, heavy, high in
power consumption, and suffer from the perceptual
aliasing problem. On the other hand, cost effective
cameras, which are easy to embed on robots, seem
very attractive. Though suffering from computational
costliness and difficulty in implementation, such
cameras are becoming more and more popular in the
SLAM community because good real-time vision
tracking algorithms emerge as well as the increasing
power in computer technology. Moreover, cameras
with unique interest feature regions might lead to
more reliable data association than is possible with a
laser scanner.

Most vision based approaches use binocular or
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trinocular stereos that are similar to range finding
devices [1-3] in the sense that they concentrate on
solving the pose estimation problem from discrepancy
image features. Stereo geometry requires the
corresponding pattern to be visible in both cameras,
therefore, cameras need to undergo synchronous
calibration and be placed relatively close together.
However, the accuracy of the pose estimate depends
on the spacing between the cameras and the
synchronous calibration since a small camera spacing
results in a low depth resolution and asynchronous
calibration degrades the accuracy. Conversely, single
camera restrictions are relaxed allowing the camera
placement to be more optimal with respect to
occlusion and accuracy. In a reduced dimension, some
researchers have pointed single cameras toward the
floor or ceiling [4]; Folkesson ef al. [5] similarly
exploits the visual and geometric salience of the walls
between those two extremes. The use of general
monocular vision has only recently drawn some
attention [6-10] due to several problems of a single
camera. First, since at least two observations of the
same landmark from two sufficiently spaced locations
are necessary to initialize its position in the state
vector, monocular SLAM aggravates the typical
challenge of SLAM, namely the inter-dependence
between mapping and localization. Second, the
landmark observation consistencies between two
positions depend on the stability of the tracking
algorithm as well as the camera location uncertainty.
Third, the high uncertainty landmark model computed
from the aforementioned initialization may lead to the
divergence of the SLAM algorithm as well as
imprecise data association. However, these constraints
can be manageable with proper initialization
algorithms. Probably, the most important problem is
the representation and maintenance of these initialized



A Simple Framework for Indoor Monocular SLAM 63

uncertainties  for monocular SLAM. Recent
approaches into two categories can be divided as
follows: bottom-up and top-down approaches. They
are natural inheritances of Structure from Motion
(SFM) approaches of the vision community and
Kalman Filter (KF) approaches of the control
community. Bottom-up approaches use a batch
nonlinear bundle adjustment or batch EKF procedure
to initialize the landmarks from several past
observations. Measurements to not-yet-initialized
features are stored in the state vector, together with
the corresponding robot positions. At a later stage,
when the probability density of the landmark position
has become sufficiently Gaussian, it is initialized in a
batch update. Several bottom-up approaches use a
large database of feature descriptors, into which
features from novel views match up to localize the
robot [11-13]. On the other hand, top-down
approaches [14-16] acknowledge the fact that feature
depth uncertainty during initialization is not well-
modeled by a standard Gaussian distribution in
Euclidean space. Hence, a new feature based on
maintaining several depth hypotheses as Gaussian
volumes for each initialized feature spread in a
geometric sum was created. In ‘delayed’ initialization
style, observations of features were pruned using
observation evidences until the most likely single
Gaussian remained which is then added to the filter to
update the camera pose estimate. In un-delayed
initialization, multi-hypotheses distributions are
explicitly imposed on the state. However, the
convergence of the filter when updating a multi-
Gaussian feature and real time performance is not
proved.

Along these SLAM real-time performance remains
unproven in the literatures, the main contribution of
our method is a general framework for monocular
SLAM using line features. We combine the advantage
of inverse depth concept [17] for good point modeling
as well as Plucker constraint for line modeling. The
approach inherits the advantage of location
independence of the top-down approach. Moreover,
our research deploys particle filter to take advantage
of the well handling dimensionality and complexity. It
has some commonalities with the researches in vision-
based approaches held in the SLAM community
recently [18,19]. These approaches however have
generally been very different from ours because the
applications are aimed at different initialization
strategies and different incorporation filter techniques,
and suffer some limitations from their assumptions.
Meanwhile, we provide an alternative approach of the
hybrid particle-unscented filter to accommodate a
non-linear observation function. Our framework does
have some good features from a practical viewpoint. It
does not require a delay initialization. It uses the
feature management process to improve the

uncertainty. It can also impose indoor environment
constraints to improve the map. The remaining
organization of this paper is as follows. Section 2 of
this paper introduces a top-down framework of the
monocular-SLLAM problem, emphasizing a modeling
feature. Section 3 then briefs on our SLAM map
representation, observation, and motion models in the
context of hybrid unscented particle filter. Section 4
exhibits how the feature management improves the
convergence of features through log likelihood and
the constraints algorithm. Section 5 provides both
simulation and real-world demonstration in an indoor
environment to support the validity of our approach.
Section 6 concludes and discusses some remaining
problems.

2. GENERAL MONOCULAR-SLAM
APPROACH

In accordance with popular SLAM literature, let s,
denote the robot’s pose at time . The map contains »
features denoted @ = 4, ... 8,. Also, let u, denote
robot’s motion from time #-I to time ¢ with z; as the
current observation. The set of observations and
motions from time 0 to ¢ are denoted by z' and «
respectively. The data associations of particular
observations to particular landmarks, up to time ¢ are
denoted 7',

The vehicle is given a probabilistic motion model

p(s; |u,,s,_;) and a probabilistic observation model,
denoted p(z,|s,,0,n,), describing how measure-

ments evolve from state. In general, both models are
nonlinear functions with independent white noises F,

and R, :

Fig. 1. A Bayes network showing common monocular-
slam model. (Inputs are shaded nodes and
outputs are unshaded nodes, association is not
included for clarity.)
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SLAM algorithms, which recursively calculate
distribution p(s’,@lz', u', n'), need to approximate
both / and g as linear Gaussian distributions. Particle
filter is a good approach for handling non-linearity of

h. For g, however, it is more difficult as it is both non-
linear and partial in monocular SLAM.

2.1. Initialization

In this paper, the landmark model is a half line
considering the following reasons. Firstly, they consist
of a point and line that combine strong characteristics
of relatively easy-localize point correspondences with
robust-illuminant line correspondences between
frames. Furthermore, they are rich and easy to find in
any indoor environment. Landmark features result
from image segmentation into contours, which
correspond to physical elements within the indoor
environment, such as edges constituted from
intersections between flat surfaces. Therefore, the
proposed landmark model is easy to extract from
environments and their characterization, by means of
polygonal approximation or edge detection, reliable
even in the presence of noise. Secondly, it is concise
and possible to represent uncertainty in order to
predict what is expected to be seen from a predicted
camera pose. Moreover, it is relatively easy to track
them in approximately linear motion since their shape
does not change abruptly. In addition, partial
occlusion due to either the view angle or the presence
of non-modeled objects, does not affect line
representation parameters. Finally, we proposed a
modeling method based on these features
correspondences.

First, Canny edge detection with adaptive threshold
value are used to detect some of the most prominent
half-lines. We generate a set of N samples point
equally distributed on each detected feature. The
Lucas-Kanade (KL) algorithm, as introduced in [20],
is adopted to track these sample points. Let W(x;p)
denote the parameterized set of an allowed warping.
Consider the set of affined warping described by the
following equation.

3)

W(x;p):((HPO P3 Ps j

py (+py) ps

ol A

where six parameters in p=(p;, p2, ps, ps Ps, Pe) are
used to represent an affined warping. We minimize the
sum of squared errors between the template image T
and the image / warped back onto the coordinate
frame of the template by iteratively minimizing it with
respect to Ap:

ZX[I(W(X,p + Ax))— T(x)]z. )

The parameters undergo update by Ap iteratively until
p converges. We use this gradient descent scheme for
real-time tracking of each sample point on a detected
line. The sampled template images, which change
abruptly, experience removal as an outlier, with the
rest fitting to the tracked line. KL tracking is typically
applied between consecutive image frames due to the
fact that linear approximation depends on a small
motion assumption. Hence, we will initialize new
feature during smooth motion for efficiency. When
features are fully initialized, each feature is matched in
subsequent frames using a more robust algorithm,
namely, normalized sum-of-squared difference
correlation. That is applying the 3D model-based line
tracking algorithm to take advantage of the robustness
to temporarily occlude the erratic motion while
normalizing to deal with illumination changes.
Observations are made by actively searching new
frames through the current estimates of camera pose
and landmark locations, and the uncertainty in these
estimates are described in more detail in the
observation section. Note that a landmark model is a
half-line with one distinct end-point. If two
neighboring landmark models happen to be co-aligned,
these distinct endpoints will either separate the
landmark models or merge them into one segment
depending on the specific application. In our case, we
separate them for simple computation.

2.2. Model

Probably, the most important problem is the
representation and maintenance of uncertainty for
monocular SLAM. Several approaches to solve the
landmark initialization problem are based on
approximating the non-Gaussian landmark state with a
sum of Gaussians (GSF) (or particles, which are
degenerated Gaussians). Then, subsequent observa-
tions update this PDF, making it converge to a single
Gaussian. Inspired by the Federated Filter (FF), [14]
proposes the FIS initialization method, which could
be seen as a shortcut of the more proper GSF-SLAM.
A more efficient solution is given by considering
inverse depth instead, for which a Gaussian
distribution is acceptable since inverse depth varies
linearly with disparity {6,9], and as a result the EKF
can still be used. This paper, however, propose a
different approach using Scale Unscented Filter (SUF)
to accommodate a highly non-linear observation
function of a line model. We first describe the
landmark model representation in 3D space in the
context of SLAM. We then present the initialization
steps of SUF for a vectorised line feature model in the
normal case as well as in the ill-conditioned case.

We use Exponential Map representation of rotation
[21] for the following reasons. First, the exponential
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map requires only three parameters to describe a
rotation (minimal representation). Second, it does not
suffer from the gimbal lock problem and its
singularities occur in a region of the parameter space

that are easy to avoid. Let w= [we w, w, ]T be a 3D

vector and @ =||w|| be its norm. An angular rotation

6 around an axis of direction w can be represented:
R(Q)=1+sin62+(1-cosO)Q?, (5)

where (is the skew-symmetric matrix correspon-

ding to the unit vector l—Lv—— :
wil

o = X
g 0
Ja w —Ww
Q=| = 0 x 6
7 ; (6)
Mowme
L6 ¢ ]

It could be seen that R(Q)=exp(Q)=71+Q
1
+5§22 +.., where Q is the skew-symmetric matrix of

w. R(Q) is not singular when 6 goes to zero as

1-cosé

. in @
replacing % and ps by the first two

terms of their Taylor expansions.
The camera state x, is composed of location: c¢

camera optical center, R(QG) rotation; linear and

angular velocity vo = (T g, AG)

x, = QY |. (7)

Fig. 2. Feature parametrization.

A half line feature is defined by the dimension 9
T
state vector (see Fig. 2): x, = (ng D]q Pr VJQ) ,

~G =G
which models a half- line feature (P?,V f), where

-G
P7 is a 3D point located at C](r; +LD]Q, ng is
Pr

camera position, DfG is ray directional vector coded

in the global reference as (Gf,qﬁf) azimuth and

elevation, depth along the ray is coded by its inverse
=G

depth p,, and Vy is direction vector of line

feature x5

Camera calibration was computed beforehand to
acquire camera intrinsic parameters. For a known
camera calibration matrix K, camera focal length /. we

P C
Prickl @) 7 1] |
c Vs ng

have:

vy

where R (QG) is the inverse rotation matrix, ;f

Py c Vi
=| p, |is image feature point, v, =\ v, |is image
Je 0

. . . =G
feature vector in camera coordinate, while Py and
=G . .

Vs are feature point and feature vector of xyin global

Xy

xfl )
*r
is the first observation of x; and

coordinate respectively. The state codes as:

where x %

considered as constant along the estimation. For
equation simplicity, we could assume that each feature
has already been computed and compensated for
distortion using calibration matrix K.

Hereafter, a feature means an undistorted one. The

Fig. 3. Triangulation at 2 positions.
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feature is then calculated by triangulation:

G G 7€ =C
xfzg((Cfl Df1 Py Vfl),

G ¢ ¢ =C ®)
& o % )
-C -C —=C
nR=VAXDP s
~C :;CX;C
We have: iJ; fﬁ c ! )
Py =klpf1
Py =kp,

-C ~C
where ny and ny are normal vector of

interpretation planes that go through camera positions
and features half-line x; expressed in camera
coordinates, k£ and k; are unknown scale factors.
Hence:

V7 = RQGT x by )< (RO x 5, (10)

-G —-C
P =(ROQG)kps +CF)

(11)
= RQGkpy +CY),
or Ak +Bk=C; fori=1,2. (12)
(see Appendix A)

gt G B
4 B “lc, B
If det| "' 1|20 then ky=—"t"2"2d and
4, B, 4 B
det
4, B,
-G —C
Pr=(RQ)kp s +CF). (13)

Function Xy = g(x), where x=(C;; DfG ;5 ;;)

can be approximated to Gaussian PDF by using SUF
[22].

Assume that x has mean X and covariance P,, a
set of 2n, +1 (n, is the dimension of x) weighted
samples S; ={W,, x;} are chosen as follows:

A=a®(n, +x)~n,, (14)
Xo =X, (15)
x=x s P, =y, (16)
ZIZJ_C_ (nx+2')Px i=nx-‘-l""’znx’ (17)
A

Wy =—2—, 18
0(m) n, + A4 (49
Voo =—+(1-a* + ) (19)
0(c) N+ A i

1

— i=L..,2n,, (20)
2n, + A1)

X

Wiimy =Wiey =

1
where « is a scaling parameter, o is a positive scaling
parameter that could be made as small as possible to
minimize higher order effects, and f is a parameter
that minimizes the effects from high order terms. Then

each sample propagates through the nonlinear
function g

xp=g(x;) i=0,1,...,2n,. 1)
The estimated mean and covariance of xyare:
2n,
X = 2 Wimy¥s; (22)
i=0
2n, -
Iy =Z(_:)VV,~(C)(xf,. —Xe)xg —Xp) . (23)
i=

Note that #,=9 in our case. Only 19 samples were
generated and the distribution of y is accurate to the
second order of a Taylor series expansion.

. . .. 4 B
However, in case of ill-conditioned det
4, B,

=0 uch as zero base-line or features at infinitives,

the initial location for the observed feature is defined
as:

. -C -C
th/?—>CG g(C}; ng Py Vf). (24)
A
a8 06
f_)Qfl

We express as follows:

8, =(¢F BF by I}fG)T’

(25)
~G _ G
C7 =Cy.
Dx
Let lA)Jg =DJ(?; =| D, |then
DZ
A -1 2 2
[%J: tan”'(-D, D +D.%) | 6
¢ tan™! D,.D,)

The initial value for o, is derived heuristically to

cover in its 95% acceptance region a working space
from infinity to a predefined close distance, d,;,

. 1
expressed as inverse depth: {—,O], S0:
min

5 = Pmin

Py

Pmin
= Pmin =

2 P 4 doin

@n
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- 5 N -C -
Similarly, V, = ocR(Qij1 vz x pjc,1 ) where

g, =

ae[O ﬂ'] a= o % (28)

z
2’
3. PARTICLE FILTER SLAM

In this section, we provide descriptions of applying
a hybrid particie-unscented filter to a general standard
SLLAM framework. Particle Filter (PF) has some
advantages over KF, such as the abilities to deal with
highly nonlinear sensor and robot motion as well as
non-Gaussian noise. PF derives from Sequential
Monte Carlo (SMC) and Bayes rule. It implements
likelihood distribution, and uses particles instead of a
determined point for state estimation. Moreover, the
observation distribution used SUF to generate
particles, resulting in a hybrid UPF to take advantage
of well handling dimensionality and non-linearity
observation. It is based on the fact that the posterior

p(s',01 2" u n')
N (29)
= p(s" |2 " i ] (6, | s",2" ' ,n')
m=1
can be factored into n landmark state-estimators and
one vehicle trajectory estimator. Each particle p,,

with associated likelihood weight w,, corresponds to a
complete pose and map hypothesis consisting of a

robot pose s[m] and estimates of all landmarks {6}.
Each particle has attached its own map and an

independent Kalman filter is implemented for each

L st

landmark in the map S,[m]=<s[ My &g s

[m]

yNt,E[m,]t>, where s is the m"™ particle path

estimate, and ,ug,','] and Z[n',"t] are the mean and

. . . h
covariance of the Gaussian representing the »n" feature

location conditioned on the path st

Before addition to the filter, features are passed
through the initialization and modeling process as
mentioned above. At each time step ¢, the following
steps take place.

3.1. Prediction
The prediction stage turns the sampled
representation of pose into a Gaussian mixture

representation of pose. We consider measurement z,.
Before sampling, we update particles s =1 M
ith UKF as follows.

1) Calculate the sigma points as in modeling:

X2 = I:f,"_l,ff_l +/(n, + A1) B, } (30)

2) Time update:

2n,

i 1—h(X[ X 1) Xio— 1—2 iy Xige-1- 3D
) Yije- 1—2 i(m) zt\t 4, (32)

T
.x - X -
Fyy = Z (c)|: T _xt|t71:\[Xi,t\t71 _xt|t—1j| :

(33)

Yyq= ( Hi-15X,

3) Measurement update:

T
i(c) [ Vo1 = Vet j|[YiiCt\t~1 — Viji-1 } ,

2n,

)’zJ’t Z

(34)
Py, Z (c)[ -1 —ft\m][Yiﬁ\H — Vi1 ]T ,

(35)
K,=P,P,," (36)
% =%y + K, (3 —m_]), (37)
B=P,-KzP,, K. (38)

We obtain 51", P™ and then we sample:
1= p(s, st Myt Aty = N(Et[m],P,[m]). 39

3.2. Observation

Using this predicted pose distribution, and the
associated landmark estimates for each particle,
landmark observations are extracted from the new
frames. For each landmark to be observed, the
Gaussian estimate of the landmark under each particle
is projected into the image by taking the weighted
mean and covariance. This yields a single Gaussian
estimate of landmark location in the image. The
corresponding 3o ellipse in the image is then searched
to locate the landmark. The landmark’s patch is
warped by an affine homography A computed from
the mode camera pose estimate and the initial camera
pose from which the landmark’s patch was captured.
The location inside the ellipse yielding maximal
normalized cross correlation (NCC) with the warped
patch is taken as an observation of the landmark if the
NCC score is above a certain threshold. If no such
match is found, the landmark measurement is
considered a failure.

3.3. Update stage

The update stage then computes the posterior
distribution by incorporating these observations.
Update observed landmark 6, by normalized

product of state distribution p(s, |sm],ut), and the
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probability of measurement z,.

pls; 1" ™Mt 2ty = 0™ [ p(z, 16, 50.m)

\—,—J
~N(z §g(9nt St Re)

-1, -1 _t-1
PG, |5 2w de,  pls, st u,)
—_—
~N L:n} 1Z[m]t V) ~Nsgsh(si ) )

(40)
Here 4 is a constant, 5™ = g(é[m],ﬁt[m]) enotes the
predicted measurement, s[m] = h(sgml],ut) he predicted

robot pose and 49,[1'" 1= y,[w]_I the predicted landmark
location.
3.4. Updating the observed landmark estimate.

The probability for the m™ particle to be sampled
(with replacement) is given by the following variable:

t—1,[m]

Wt[m] o« plz, |s ,ut’zt—l,nt) _

([[ P 1645.m) p(8,, |5 ™M™ 27 it Yyag,
NgCao k) ng, ,ﬂgn} R
pls; st u, ) ds;. @1)

~N(s;8m B

This expression can once again be approximated as
a Gaussian with mean Z, and covariance Q,['" 1

4. DATA ASSOCIATIONS AND FEATURE
MANAGEMENT

In this section, we show a feature management
scheme for data association improvement in particle
filter approach. In addition, constraints between
features in the environment are taken into account for
reducing estimated errors and improving performance.
We select the data association n, that maximizes the
probability of the measurement z, for the m™ particle:

Af— l[m] t[m] Zt—l

n[ m =argmax p(z; | n,,7 ,u'). (42)

ny
Data association is calculated as follows.

Pz |, 0, 211 ) =

jp(Z, |6,

NN(Zt;g(gnt ,51 ),Rt)

nt’st ) p(e | Af— 1,[m] t l[m] t 1)(]’0

Nt

(43)

g is a Gaussian over z, with mean g(,u[m} 12 [m])

and covariance Q[m] Each particle makes its own
local data association, which renders significantly

more robust to noise than EKF-style algorithms.
Following [23], our approach removes such
unlikely landmarks by keeping track of their posterior
probability of existence. Qur mechanism analyzes
measurements for the presence and absence of
features. Observing a landmark provides positive
evidence for its existence, whereas not observing it

when ,u[ "1 alls within the robot’s perceptual range

provides negative evidence. The posterior probability
of landmark existence is accumulated by the
following Bayes filter, whose log-odds form is:

A7 =S Py
t

1- p(i,

[ gfm 2 4l )

| Jml gl

Here 7" re the log-odds of the physical existence of

landmark 6™ in map and p(l™ | sz, AM) s
the probabilistic evidence provided by a measurement.
Under appropriate definition of the latter, this rule
provides for a simple evidence-counting rule. If the
log-odds drop below a predefined threshold, the
corresponding landmark is removed from the map.
This mechanism enables particles to free themselves
of unlikely landmarks. Because the landmark
estimates within each particle are independent, each
landmark update can be computed in constant time.
Thus, at the end of each time step, the particle cloud is
a set of samples drawn from the posterior distribution
of poses and landmarks given by all observations up
to the current time. The total cost of updating
landmark estimates and optimizing the proposal over
M particles given k observations is O(Mk), indepen-
dent of the number of landmarks N. In contrast, the
EKF with full covariance requires O(N)* time to
formulate observation updates, which makes large
numbers of landmarks impracticable.

Most slam algorithms make few assumptions about
the environment; thus, slam does not take advantage
of prior information when the environment is known
to have specific structural characteristics. In this paper,
we take into account the fact that indoors
environments can often be assumed to be “mostly”
rectilinear. A few previous works have enforced
constraints on maps represented using an extended
Kalman filter (EKF) [24,25]. In this paper, we exploit
the Rao-Blackwellized constraint filter. The major
difficulty is that RBPF SLAM relies on the
conditional independence of landmark estimates given
a robot’s pose history, but relative constraints
introduce correlation between landmarks. Our
approach exploits a property similar to that used in
[26] for standard Rao-Blackwellization slam:
conditioned on values of constrained state variables,
unconstrained state variables are independent. We use
this fact to incorporate per-particle constraint enforce-
ment into the filter. The algorithm is brief as follows:
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Algorithm 1: Constraints enforcement initialization and update

a) Initialize algorithm
1. Initialize backup state: g, <@

n+l?

An+1 =F

n+l

2. Initialize measurement accumulator: z,,, < [0];0,,, < [»]
3. Initialize constraint set: R« { }
4. For all previously constrained groups L <® do

Draw constraint parameters ¢, . ~ p(c,,, ;). V0, € ,

n+l,j

If constrained: 36 ;€L such that ¢ z*

n+l,j

Forallo, e 1, do

Add x; to constraint set: R « R v {9}.}

End for
End if
Remove old super landmark: © « @\,
End for
5. Ifno constraints on x,+; return: R=< end if
6.  Add new landmark to constraint set: R« RuU{4,, }
7. Add new super landmark: © « ® U {R}
8.  For all constrained landmarks 6, e R do
Compute unconstrained state estimate éj « B+ A jQ‘;l (Z,-8)
Compute unconstrained covariance 2 « A, - A,0;'A}
End for
-1
. . . -1
9. ML estimate covariance of p: Py <—( 6,cR P p)

10. ML estimate of p: p « P;(ze i (i i0,,) P, )
J ’ i :

J.p
11. For all constrained landmarks 0, cR do

Rewind state to pre-particalized version: 6, « ;P = A;

.. . . 1 LA
Conditional mean givenp: 6, 5 « 6, +P, - P, (gj (cnﬂ’j,p) -6, p)

I . . -1 T
Conditional covariance: P« P5~-PoP P

Fix constrained variables: 6, =g, (cm’j;ﬁ);Pj’p «[0]:P, 5, «<[0]

Replay since particalization 6, <6, + PjQJ’.1 (Z i 0‘/.) 3P« P~ P].Q]T1 PjT
End for
b) Update algorithm

~1
1. Update state: 6, « 6, +P, (R]. +R) (z —9],)
. -1 7
2. Update covariance P, =P, -P (P, +R) P,
3. IHfxconstrained:3. € ©,0, e L suchthat ¢, eLl and 6, =6,
-1
Update measurement accumulator: Z, « Z, +0, (Q .+ R) (z - Zj)

Update accumulator covariance: 0, « 0, -0, (Qj + R)‘1 Q;’."

else
Update backup state, covariance: g, <~ 6,;A, =P,

end if
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5. EXPERIMENT RESULT

This section shows both simulation and real world
experiments to prove that integrating topological
alignment with Rao-Blackwellized particle filter will
result in a more accurate global map upon loop
closure.

5.1. Simulation experiment

In this simulation part, we use the adaptive
sampling approach described by Grisetti, Stachniss,
and Burgard [27]. Noise was introduced by perturbing
measurements and motions in proportion to their
magnitude. Line segment features estimated
covariance using the nearer end-point and a direction
vector rather than the full data. Data association are
assumed corrected.

The first set of experiments were designed to
validate the advantages of using SUF initialization
over normal initialization. We compute over 50 Monte
Carlo trials running the mapping algorithm with and
without SUF initialization conditioned on error
models setup as described above. It is immediately
apparent from Fig. 4 that the algorithm map with SUF
initialization permits more accurate results than the
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Fig. 4. Simulation in a normal environment.

uninitialized map in terms of real errors; the particles
have smaller spread and are nearer the true state.

As the robot goes further away from the origin,
measurement noise is increased, but the estimation
errors of the initialized algorithm is about 1.6 times
better than that of uninitialized algorithms. Fig. 5
shows normalized estimation error squared (nees) of
the robot’s estimated pose with respect to the ground
truth. It is worth noting that in a real environment, an
algorithm with SUF initialization is much better in
terms of correct data association and resampling.
These issues will be further discussed in the real
experiment section.

In the second set of experiments, different types of
buildings with different motion error models are used
to test the outperformance of enforcing constraints
over relaxing constraints in mapping. The tests also
determine the convergence characteristics of the
algorithm when running in various conditions in
respect to type of environment, areas, time, and error
model. Additionally, we restricted the maximum range
to at most 5 m. Figs. 8, 10, and 12 present the
simulation results of our SLAM algorithm on different
types of environments. In a typical square building
(Fig. 7), the results illustrate the behavior of our
system using a standard proposal distribution. The
robot closed the loop properly in its line-based
landmark map. In a circle corridor (Fig. 9), a
polygonal approximation can be obtained. Finally, in a
slight curved corridor (Fig. 11), a high threshold value
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Fig. 5. The blue plot is the error for standard rbpf
slam. The red plot is the error for our
algorithm with SUF initialization.
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Fig. 6. The red plot is the error for standard

(unconstrained) rbpf slam. The blue plot is

the error for our algorithm with rectilinearity

constraints.
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Fig. 7. Typical square building.

ey

} —
T m,
do Ifr

|

: : 1 L 3
42 25 & E 4t @ £ 10¢ 128 128 Ine

Fig. 8. Simulation result with threshold angle equal to
10 degrees.
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Fig. 10. Simulation result with threshold angle equal
to 10 degrees.

Fig. 12. Simulation result with threshold angle equal
to 3 degrees but taking a long time.

for rectilinear set results in the uncorrected data,
exhibiting significant error, particularly with respect
to the robot’s orientation. At slight curve line, the
robot mistakenly decides constraint groups of features
and produces a wrong map. To cover this problem, the
threshold for the rectilinear model and the error model
are set to low and we increase the number of
constraint groups. However, this will slow down the
performance. Note that due to large uncertainty, there
exist spurious landmarks in the results; however, the
environment’s structure and the robot’s trajectory
were properly recovered. These results also indicate
that fewer particles are required than in the
unconstrained approach even in the case of high
uncertainty — parameters  during  initial = pose
initialization. All error models, environment
complexity, and robot behaviors could affect SLAM
result. Relaxed approximations can lead to poor data
association or even divergence as in the last case. It is
worthwhile noting that the filter can have real-time
performance for 50 particles. Moreover, the rate of
growth in the number of landmarks is approximately
constant over the entire run. The built maps are
correct and most of the time the robot returns to the
map origin (with errors < 30cm). Fig. 6 shows
normalized estimation error squared (nees) of the
robot’s estimated pose with respect to the ground truth,
computed over 50 Monte Carlo trials for a typical



72 Xuan-Dao Nguyen, Bum-Jae You, and Sang-Rok Oh

square environment. We can conclude that
incorporating and enforcing constraints leads to a
significant improvement in the resulting maps and a
reduction in estimation error.

5.2. Real world experiment

For further evaluating the performance of SLAM,
we perform the real experiments in a large
environment. Two characteristics of our proposed
algorithm are analyzed: robust data association and
consistent convergence. Testing of our SLAM system
was performed on a home service robot ISSAC shown
in Fig. 13. Only odometry sensors and a USB video
camera are equipped on the robot. Vision processing
is based on OpenCV library while Bayes++ library is
used for particle filter SLAM algorithm and scale
unscented transform. All of this was implemented on a
notebook computer (1.6GHz). The flowchart of the
implemented algorithm is shown in Fig. 14. The
testing environment was the floor of our L1 building
laboratory. In order to perform these experiments
autonomously, the robot was given a behavior-based
exploration strategy. The behaviors include wall
following and a look-back behavior. It was triggered
by either needing to find a new landmark or turning at
waypoints. The purpose of this behavior was to view

Fig. 13. ISSAC.

/r Flowchart algorithm \

Fig. 14. Overall flowchart.

the same feature from different directions and
compute the topological relationship of new and old
landmarks. The statistics of the experiments are
provided in Table 1.

First, we test the data association performance of
our algorithm. In SLAM, it is well known that,
applying an angular velocity to a robot will results in
a non-linear pose distribution. Without managing
heading error, the filter will diverge rapidly. In
addition, the non-linearity of the observation model is
even aggravated through compounding with the
relative distance model. Therefore, the nearest
neighbor test for data association quickly fails in our
experiment for normal particle filter approaches with
the same number of particles. However, with SUF
initialization, the robot can still associate data
successfully. Moreover, high uncertainty accompanied
by non-linear rotation effect is further reduced by
pairing the relationship of features. Line equations
that are near co-alignment and have distance between
them smaller than a threshold are considered the same.
Similarly, we apply the rule to the parallel and
orthogonal lines relation. These constraints will be
used in updating the probability of the robot position
and in keeping the uncertainty manageable. Finally,
inheriting the robustness of particle filter for model
line tracking, in 96% of our experiments, the robot
can successfully recover from “lost” due to
infrequently erratic motions or temporary occlusions.
Fig. 15 indicates the floor-plan. Some typical images
captured from the robot camera during an actual
experiment are revealed in Fig. 16.

Second, we vary the number of particles and the
“effective sample size” to test the performance of
sampling/resampling factors and convergence of our
algorithm. One important factor, which greatly affects
the consistent performance of the particle filter, is the
sampling/resampling process. Incorporating constraints
enables consistent mapping even with fewer particles-
this leads to significant computational performance
increases and the map can be created in real-time.

Table 1. Statistics of the environment.

A square

building
Dimension 20x40m
Particles (constrained) 30
Particles (unconstrained) 200
Average runtime (constrained 50 runs) 650s
Average runtime (unconstrained 50 runs)| 1400s
Success rate 96%
Sensing range S5m
Path length 120m
Number of landmarks 80
Constrained group 4




A Simple Framework for Indoor Monocular SLAM 73

Fig. 16. Map of predicted landmarks and moving
path.

Fig. 17. Result of our algorithm.

Further, high effective sample size setting reduces the
impact of resampling. The fact is that to reduce the
uncertainty, we need to incorporate additional
uncorrelated information to the vehicle position and
relative indoor structures are considered a reasonably
good choice. Hence, similar to simulation, the real
experiments of our algorithm always yield a
consistent map of the environment because
uncertainty is well managed under SUF initialization
and the integration of topological alignments. Fig. 17
shows a map created using 50 particles. In fact, our
algorithm could reliably converge with 30 samples
indicating an enormous improvement.

6. CONCLUSION

We have proposed an approach to use a single
camera with natural landmark models for the SLAM
algorithm of indoor mobile robots. The use of SUF to
approximate highly non-linear observations makes the
algorithm applicable in a general 3D bearing-only
SLAM case. Based on assumptions that the indoor
environment is almost structure, constraints are
imposed on the computed landmarks to improve both
the consistent and computational performance.
Integration of these within a Rao-Blackwellized
particle filter shows the possibility of the proposed
algorithm for real-time application with the
approximate rate of 10 Hz. The algorithm has been
applied for a mobile robot, dubbed ‘ISSAC’,
successfully. Our future work will include the solution
to autonomously build the large, complicated map
with a fully explored indoor environment.

APPENDIX A
We have: 4k +B;k=C; fori=1,2or
. Wo Wy,
0 0
fi Yl
-w kipx, fol
A A
0 klpy + Cy
oy o L
1 1 ko f
-w “A
YA *h 0
0 0
e ! 45)
0 _;sz v:’f
f f
W || P Cxs
=l =L o il c
- P 0 kpy + Yrop
/ f
K c,
Wy Wap 0 !

where



74

(1]

[2]

(31

[4]

[5]

(6]

[7]

(8]

(9]

(10]

Xuan-Dao Nguyen, Bum-Jae You, and Sang-Rok Oh

-w, w,
4 =(—py + ),
A A
w, w,,
Bi=(—Lp,+=L 1),
0r Or
Cl =fo _fol 5

w, W,
A2=<6f1 Pat— A ),
A A

W, Wy
B, = (e_fpx +—9—ff),
i f

REFERENCES
D. O. Gorodnichy and W. W. Armstrong,
“Single camera stereo for mobile robot world
exploration,” Proc. of Vision Interface Conf. VI,
1999.
S. Thrun, A. Buecken, W. Burgard, D. Fox, T.
Froehlinghaus, D. Henning, T. Hofmann, M.
Krell, and T. Schmidt, “Map learning and high-
speed navigation in RHINO,” Al-based Mobile
Robots: Case Studies of Successful Robot
Systems, D. Kortenkamp, R. P. Bonasso, and R.
Murphy, ed., MIT Press, 1998.
D. Murray and J. Little, “Using real-time stereo
vision for mobile robot navigation,” Proc. of
IEEE Conf. on Computer Vision and Pattern
Recognition, 1998.
W. Y. Jeong and K. M. Lee, “Visual SLAM with
line and corner features,” Proc. of the IEEE/RS.J
International Conference on Intelligent Robotics
and System, Beijing, China, October 2006.
J. Folkesson, P. Jensfelt, and H. 1. Christensen,
“Vision SLAM in the measurement subspace,”
Proc. of the IEEE International Conference on
Robotics and Automation, 2005.
J. M. M. Montiel, J. Civera, and A. J. Davison,
“Unified inverse depth parametrization for
monocular SLAM,” Proc. of Robotics: Science
and Systems, Philadelphia, 2006.
E. Eade and T. Drummond, “Edge landmarks in
monocular slam,” Proc. of British Machine
Vision Conference, 2006.
P. Smith, I. Reid, and A. Davison, “Real-time
monocular slam with straight lines,” Proc. of
British Machine Vision Conference, 2006.
E. Eade and T. Drummond, “Scalable monocular
stam,” Proc. of IEEE Conf. Computer Vision
and Pattern Recognition, 2006.
T. Lemaire and S. Lacroix. “Monocular-Vision
based SLAM using line segments,” Proc of
Robotic 3D Environment Cognition, Workshop

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

at the International Conference Spatial
Cognition, 2006.

P. Elinas, R. Sim, and J. J. Little, “cSLAM:
Stereo vision SLAM using the Rao-
Blackwellised particle filter and a novel mixture
proposal distribution,” Proc. of the IEEE
International Conference on Robotics and
Automation, 2006.

R. Sim, P. Elinas, M. Griffin, A. Shyr, and J. J.
Little, “Design and analysis of a framework for
real-time vision-based SLAM using Rao-
Blackwellised particle filters,” Proc. of the IEEE
International Conference on Robotics and
Automation, Orlando, Florida, May 2006.

M. Li, B. Hong, Z. Cai, and R. Luo, “Novel
Rao-Blackwellized particle filter for mobile
robot SLAM using monocular vision,”
International Journal of Intelligent Technology,
vol. 1, no. 1, 2006.

J. Sola, A. Monin, M. Devy, and T. Lemaire,
“Undelayed initialization in bearing only
SLAM,” Proc. of the IEEE International
Conference on Robotics and Automation, 2005.
A. J. Davison, “Real-time simultaneous
localization and mapping with a single camera,”
Proc. of International Conference on Computer
Vision, 2003.

T. Lemaire and S. Lacroix, “Monocular-vision
based SLAM using line segments,” Proc. of the
1EEE International Conference on Robotics and
Automation, 2007.

E. Eade and T. Drummond, “Scalable monocular
SLAM,” Proc. of Conference on Computer
Vision and Pattern Recognition, New York,
USA, pp. 469-468, 2006.

N. M. Kwok and G. Dissanayake, “Bearing-only
SLAM in indoor environments using a modified
particle filter,” Proc. of the Australasian
Conference on Robotics & Automation, 2003.

M. Pupilli and A. Calway, “Real-time camera
tracking using a particle filter,” Proc. of British
Machine Vision Conference, 2005.

S. Baker and 1. Matthews, “Lucas-Kanade 20
years on: A unifying framework: Part 1,”
http://citeseer.nj.nec.com/531560.html, 2002.

V. Lepetit and P. Fua, “Monocular model-based
3d tracking of rigid objects: A survey,”
Foundations and Trends in Computer Graphics
and Vision, vol. 1, no. 1, 2005.

S. J. Julier, “The scaled unscented
transformation,”  http://www.cs.unc.edu/welch/
kalman/media/pdf/ACC02-IEEE1357.PDF

M. Montemerlo, S. Thrun, D. Koller, and
B.Wegbreit, “FastSLAM: A factored solution to
the simultaneous localization and mapping
problem,” Proc. of the AAAI National Conf. on
Artificial  Intelligence, Edmonton, Canada,



A Simple Framework for Indoor Monocular SLAM 75

AAALI 2002.

[24] W. Wen and H. Durrant-Whyte, “Model-based
multi-sensor data fusion,” Proc. of IEEE Intl.
Conf. on Robotics and Automation, pp. 1720-
1726, 1992,

[25] D. Rodriguez-Losada, F. Matia, A. Jimenez, and
R. Galan, “Consistency improvement for SLAM
-EKF for indoor environments,” Proc. of IEEE
Intl. Conf. on Robotics and Automation, pp. 418-
423, 2006.

[26] K. R. Beevers, W. H. Huang, “Inferring and
enforcing relative constraints in SLAM,” Proc.
of the 7th Intl. Workshop on the Algorithmic
Foundations of Robotics, New York, USA, July
16-18, 2006.

[27] G. Grisetti, C. Stachniss, and W. Burgard,
“Improving gridbased SLAM with Rao-
Blackwellized particle filters by adaptive
proposals and selective resampling,” Proc. of the
IEEE International Conference on Robotics and
Automation, Barcelona, Spain, April 2005.

student at the Korea Institute of
Science and Technology (KIST). He
received his  B.Sc. (1997) at
Wollongong University, NSW,
Australia. From 2002 to the present, he
has studied at KIST. His research
interests include SLAM, machine
vision, and localization for mobile

robots.

Bum-Jae You received the B.S.
degree in Control and Instrumentation
Engineering from Seoul National
University, Seoul, Korea, in 1985 and
the M.S. and Ph.D. degrees in
Electrical and Electronic Engineering
from the Korea Advanced Institute of
Science and Technology (KAIST),

Daejon, in 1987 and 1991, respectively.

He worked as Head of the Robotics Division at Turbo Tek
Co., Ltd., Korea, from 1991 to 1994, conducting the
development of a high-speed image processor and motion
controller for robots. He joined the Korea Institute of
Science and Technology (KIST), Seoul, Korea, in 1994, and
is now the Center Director at the Intelligent Robotics
Research Center. He was a Visiting Fellow at the
Department of Computer Science, Yale University, New
Heaven, for three months in 1997, conducting three-
dimensional visual tracking of polyhedral objects. His
research interests include vision-based robotics, vision-
based control, real-time computer vision, intelligent service
robots, as well as humanoid and digital signal processor
applications. Dr. You is a Member of IEEE, the Korea
Institute of Electrical Engineering, and Institute of Control,
Robotics and Systems.

Xuan-Dao Nguyen is currently a Ph.D.

Sang-Rok Oh received the B.S.
degree in Electronic Engineering from
Seoul National University, Seoul,
Korea, in 1980, and the M.S. and Ph.D.
degrees in Electrical and Electronic
Engineering from the Korea Advanced
Institute of Science and Technology
(KAIST), Daeduk, Korea, in 1982 and
1987, respectively. He worked as a
Research Associate at the Systems Control Laboratory,
KAIST, for ten months in 1987, conducting the design and
implementation  of  multiprocessor-based  automatic
assembly machines for micro electronic components and
robotic control systems for multilegged locomotion. In 1988,
he joined the Korea Institute of Science and Technology
(KIST), where he has been working as a Principal Research
Engineer at the Intelligent System Control Research Center
(ISCRC). During 2000-2003, he was a Head of ISCRC,
KIST. In 1999, he also became Director of the Bio-mimetic
Control National Research Laboratory, designated by the
Ministry of Science and Technology, Korea. He was a
Visiting Scientist at the T. J. Watson Research Center, IBM,
Yorktown Heights, NY, from 1991 to 1992, conducting
precision assembly using the magnetically levitated robot
twist. He also worked as a Visiting Scientist at the
Mechanical Engineering Laboratory, Tsukuba, Japan, for
three months in 1995, investigating the area of mobile
manipulation. Dr. Oh is a Member of IEEE, the Korea
Institute of Electrical Engineering, the Korea Fuzzy Logic
and Intelligent System Society, and Institute of Control,
Robotics and Systems.



