• 제목/요약/키워드: Indoor location based system

Search Result 311, Processing Time 0.023 seconds

Implementation of Indoor Location-Aware System based on Probability Distribution of RSSI (RSSI 확률분포를 사용한 실내 위치 인식 시스템의 구현)

  • Kim, Myung Gwan;Kim, Jin Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.9-14
    • /
    • 2008
  • Ubiquitous implementation of indoor location-based technology is recognized that one of the important elements of the technology. Specifically, the hospital management of patients, the silver-town management, the implementation of the smart home for the indoors rather than outdoors in a range of broadband users for location-aware technology is needed. This paper in wireless devices with an indoor location awareness shows about the system's technical design and implementation. Location-based technology for wireless LAN users aware of the strength of radio signals (Received Signal Strength Indication, RSSI) using trilateration. Topographic mapping system will be implemented wireless devices and servers, Access Point (AP), which is the system's development and testing throughout the physical environment to determine the potential for real-life applications.

  • PDF

Development of Time-location Weighted Spatial Measures Using Global Positioning System Data

  • Han, Daikwon;Lee, Kiyoung;Kim, Jongyun;Bennett, Deborah H.;Cassady, Diana;Hertz-Picciotto, Irva
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.5.1-5.7
    • /
    • 2013
  • Objectives Despite increasing availability of global positioning system (GPS), no research has been conducted to analyze GPS data for exposure opportunities associated with time at indoor and outdoor microenvironments. We developed location-based and time-weighted spatial measures that incorporate indoor and outdoor time-location data collected by GPS. Methods Time-location data were drawn from 38 female subjects in California who wore a GPS device for seven days. Ambient standard deviational ellipse was determined based on outdoor locations and time duration, while indoor time weighted standard deviational ellipse (SDE) was developed to incorporate indoor and outdoor times and locations data into the ellipse measure. Results Our findings indicated that there was considerable difference in the sizes of exposure potential measures when indoor time was taken into consideration, and that they were associated with day type (weekday/weekend) and employment status. Conclusions This study provides evidence that time-location weighted measure may provide better accuracy in assessing exposure opportunities at different microenvironments. The use of GPS likely improves the geographical details and accuracy of time-location data, and further development of such location-time weighted spatial measure is encouraged.

APPLICATION OF WIFI-BASED INDOOR LOCATION MONITORING SYSTEM FOR LABOR TRACKING IN CONSTRUCTION SITE - A CASE STUDY in Guangzhou MTR

  • Sunkyu Woo;Seongsu Jeong;Esmond Mok;Linyuan Xia;Muwook Pyeon;Joon Heo
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.869-875
    • /
    • 2009
  • Safety is a big issue in the construction sites. For safe and secure management, tracking locations of construction resources such as labors, materials, machineries, vehicles and so on is important. The materials, machineries and vehicles could be controlled by computer, whereas the movement of labors does not have fixed pattern. So, the location and movement of labors need to be monitored continuously for safety. In general, Global Positioning System(GPS) is an opt solution to obtain the location information in outside environments. But it cannot be used for indoor locations as it requires a clear Line-Of-Sight(LOS) to satellites Therefore, indoor location monitoring system could be a convenient alternative for environments such as tunnel and indoor building construction sites. This paper presents a case study to investigate feasibility of Wi-Fi based indoor location monitoring system in construction site. The system is developed by using fingerprint map of gathering Received Signal Strength Indication(RSSI) from each Access Point(AP). The signal information is gathered by Radio Frequency Identification (RFID) tags, which are attached on a helmet of labors to track their locations, and is sent to server computer. Experiments were conducted in a shield tunnel construction site at Guangzhou, China. This study consists of three phases as follows: First, we have a tracking test in entrance area of tunnel construction site. This experiment was performed to find the effective geometry of APs installation. The geometry of APs installation was changed for finding effective locations, and the experiment was performed using one and more tags. Second, APs were separated into two groups, and they were connected with LAN cable in tunnel construction site. The purpose of this experiment was to check the validity of group separating strategy. One group was installed around the entrance and the other one was installed inside the tunnel. Finally, we installed the system inner area of tunnel, boring machine area, and checked the performance with varying conditions (the presence of obstacles such as train, worker, and so on). Accuracy of this study was calculated from the data, which was collected at some known points. Experimental results showed that WiFi-based indoor location system has a level of accuracy of a few meters in tunnel construction site. From the results, it is inferred that the location tracking system can track the approximate location of labors in the construction site. It is able to alert the labors when they are closer to dangerous zones like poisonous region or cave-in..

  • PDF

Design and Implementation of an Integrated Positioning System for Location-Based Services (위치기반서비스를 위한 통합측위시스템 설계 및 응용)

  • Yim, Jae-Geol;Nam, Yoon-Seok;Joo, Jae-Hun
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.4
    • /
    • pp.57-70
    • /
    • 2006
  • Location Based Service (LBS) provides high-value added service to users and various works about IBS have been actively performed. The core technology or LBS is positioning of the users. In the field of positioning, outdoor positioning and indoor positioning are developed separately. We are proposing a design of an outdoor-indoor positioning system, implementing a prototype of the system, and verifying the usefulness of the system through experiments. Our experimental results shows that the average error of our system is 4.8 m in the case of out-door positioning and it is 3.3 m in the case of in-door positioning.

  • PDF

Indoor Location System based on TDOA between RF and Ultrasonic Signal (RF와 초음파 사이의 TDOA에 기반한 실내 측위시스템)

  • Seo, Young-Dong;Song, Moon-Kyou
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6C
    • /
    • pp.611-618
    • /
    • 2009
  • Recently, an indoor location-aware technology has been focused on as a key technology for context awareness in ubiquitous computing environments. The conventional Cricket system was designed with a non-centralized architecture, which has advantages in terms of user privacy, deployment, scalability, decentralized administration, network heterogeneity, and low cost. In this paper, an indoor location system based on TDOA between RF and ultrasound signals is designed, which improves the Cricket system. A 2.4GHz frequency is employed for transmitting RF messages, which is in an ISM band. The beaconing frequency is doubled to enhance the channel utilization rate. The ultrasonic pulse duration is optimized to increase the coverage of ultrasonic signals. The function of calculating location coordinates is embedded in a listener. The location-update rate and location accuracy are also improved.

Indoor-Outdoor Positioning Method (옥내외 겸용 측위 방법)

  • Yim Jae-Geol;Lee Gye-Young;Shim Kyu-Bark
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.9
    • /
    • pp.1222-1230
    • /
    • 2006
  • Location-Based Service (LBS) is a service provided to the user based on the user's current geographic location. Since LBS provides a higher value-added service, LBS has been applied on various businesses, industries and even on personal lives. Positioning users is the essential technology in building an LBS system. Thanks to GPS (Global Positioning System), Positioning outdoor is successfully used in practice. However, there is not a general solution for indoor positioning yet, even though many strategies for indoor positioning have been introduced. One of the reasons for the lack of successful indoor positioning is that most of the existing indoor positioning strategies require special equipments dedicated for positioning. This paper introduces an indoor positioning strategy that does not require any additional equipments. Integrating our indoor positioning strategy with GPS-based outdoor positioning, we have implemented an indoor-outdoor positioning system. Experimental results of the system is also introduced.

  • PDF

A Model Stacking Algorithm for Indoor Positioning System using WiFi Fingerprinting

  • JinQuan Wang;YiJun Wang;GuangWen Liu;GuiFen Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1200-1215
    • /
    • 2023
  • With the development of IoT and artificial intelligence, location-based services are getting more and more attention. For solving the current problem that indoor positioning error is large and generalization is poor, this paper proposes a Model Stacking Algorithm for Indoor Positioning System using WiFi fingerprinting. Firstly, we adopt a model stacking method based on Bayesian optimization to predict the location of indoor targets to improve indoor localization accuracy and model generalization. Secondly, Taking the predicted position based on model stacking as the observation value of particle filter, collaborative particle filter localization based on model stacking algorithm is realized. The experimental results show that the algorithm can control the position error within 2m, which is superior to KNN, GBDT, Xgboost, LightGBM, RF. The location accuracy of the fusion particle filter algorithm is improved by 31%, and the predicted trajectory is close to the real trajectory. The algorithm can also adapt to the application scenarios with fewer wireless access points.

RF and Ultrasonic Interference Reduction Technique in Indoor Location Sensing Systems (실내 위치 인식 시스템에서 RF와 초음파 간섭 축소 기법)

  • Hwang, Sung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.364-369
    • /
    • 2012
  • Location information is a critical element of ubiquitous computing. Cricket is an indoor location-based system that transmits radio and ultrasonic signals in regular intervals to calculate the distance between nodes. However, the amount of signal interference and collisions increases in proportion with the number of nodes, losing the accuracy of the location-based system. This study proposes an algorithm based on the 802.15.2 MAC protocol for the wireless sensor network to reduce signal interference and collision by employing node numbers and the frequency reuse approach used in mobile telecommunication. We analyzed the performance of our algorithm. The obtained results showed that the algorithm is an effective for throughput and energy compared to the Cricket system.

Wi-Fi Line-of-Sight Signal based Indoor Localization Method Using Smartphone and Two Dual-band APs (2개의 이중대역 AP와 스마트폰을 이용한 Wi-Fi LOS 신호 기반의 실내 측위 기법)

  • Jo, Hyeonjeong;An, Hyunseong;Kim, Seungku
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.5
    • /
    • pp.583-591
    • /
    • 2018
  • With the development of ICT(Information and Communication Technology), the number of smart devices is rapidly increasing. LBS(Location Based Service) applications that provide user's location based service are used in various fields. There is also a growing demand for indoor precision positioning technology to provide seamless services. In this paper, we propose an indoor positioning system that estimates the location of a smartphone user. The proposed algorithm determines whether the received signal is LOS(Line-of-Sight) or NLOS(Non-Line of-Sight) in order to decrease multipath effect by the indoor environment. The proposed positioning algorithm is very simple and requires only the AP(Access Point) coordinates. In addition, it requires only two APs for estimating the location of a smartphone user. The proposed algorithm is a practically applicable technology without any additional hardware and kernel modification in the smartphone. In the experiment results, the reliability of the positioning system was found to be within 0.83 m.

Indoor Positioning System Using Robust Outlier Extended Kalman Filter (이상 잡음에 강인한 확장 칼만 필터를 이용한 실내 위치 추정 시스템)

  • Kim, Dong-Seon;Yeom, Hak-Sun;Kim, Sun-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.954-960
    • /
    • 2009
  • In this paper, Indoor Positioning System based on Wi-Fi system which is one of the key technology in LBS(Location Based Service) is proposed. The proposed system estimates distance between MS(Mobile Station) and AP(Access Point) using RSSI(Received Signal Strength Indicator). RSSI is affected by outlier that originate from indoor environment complexity and obstacle. In this paper, we introduce a Robust outlier Extended Kalman Filter that can ignore, real-time outlier in the observations. To demonstrate performance of proposed indoor positioning system, we used a PDA as the MS.