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Introduction

Human time-location behavior is an important determinant  
of environmental health. There are several methods used for  
acquiring time-location information including time-activity dia-
ries, questionnaires, and observation [1]. These methods can be 
heavily affected by recall abilities and the voluntary participa-
tion of subjects. With the recent development of geographic in-
formation systems (GIS) and related geospatial technology, in-

cluding global positioning system (GPS), it becomes increas-
ingly possible to examine the interrelationship between human 
time-location behaviors and exposure potentials. Recent valida-
tion studies indicated that GPS could improve quality and col-
lection efficiency of time location data [2,3].

GPS technology is now widely available, and it has been uti-
lized across various settings of public health research and prac-
tices; mapping the concentrations of pollutants and environ-
mental risk factors, tracking and identifying high risk population 
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groups, characterizing environmental correlates of the built en-
vironment, and further developing exposure assessment meth-
ods [4-8], including recent review articles documenting best 
practice guideline on the use of GPS in health studies [9,10]. Al-
though the GPS technology has potential for environmental 
health and exposure science, a number of important issues need 
to be addressed. One major obstacle is the lack of appropriate 
methods to represent and analyze a large amount of time-loca-
tion data in the context of human exposure assessment. Previ-
ous studies have focused on the feasibility and validation of 
GPS-collected time activity data [2,3,11], and the development 
of wearable GPS logger or GPS-enabled cell phones [8,12,13], 
to investigate the effects of time-location behaviors on health. 
Few examples exist on methods for the collection and process-
ing of complex and large sets of space-time mobility data in 
health research [9]; yet no available methods to summarize ex-
posure potentials/opportunities that may vary with individual’s 
mobility patterns in space and time.

Another issue is that some GPS devices fail to receive a signal 
indoors [14], because it is often the case that automatically col-
lected GPS data are representative of time spent outdoor loca-
tions. In the US, people spend more than 80% of their time in-
doors, mostly in their own homes [15]. Related to a specific 
health outcome, for example, a recent study found that increas-
ing weeks of pregnancy was positively correlated with increasing 
time spent at home [16]. The fact that humans are mobile adds 
another complexity in understanding population exposures be-
cause of the possibility of various exposures in different micro-
environments and hazards through movement. Little research 
had been conducted to analyze GPS-collected time-location 
data for exposure opportunities associated with time at indoor 
and outdoor microenvironments. Indoor concentration of cer-
tain pollutants may differ from outdoor levels because of indoor 
sources and ventilation patterns. For instance, US Environmen-
tal Protection Agency Total Exposure Assessment Methodolo-
gy studies reported higher indoor levels of common organic 
pollutants [17]. However, previous environmental epidemio-
logical studies were mostly based on outdoor measurement of 
pollutants, not considering indoor exposures. 

The purpose of the study was to develop methods to incorpo-
rate location-time weighted spatial distribution for subject mo-
bility using GPS collected time-location data. We developed 
two types of location-based and time-weighted spatial measures; 
ambient standard deviational ellipse (A-SDE) that represented 
average size of time-location variability only with outdoor loca-
tion, and indoor time-location weighted SDE (IW-SDE) with 
equal in- and outdoor weights, that represented both indoor and 
outdoor exposures based on time and exposure weights.

Materials and Methods 

Study Population and Data Collection

Time-location data were collected from a subset of study par-
ticipants in California, as a part of the Study of Personal Expo-
sure Related Behavior (SUPERB). Details of the SUPERB have 
been described elsewhere [18]. In short, SUPERB collected 
data in three main tiers with data collection platforms for food 
consumption, temporal-spatial activity, and household prod-
ucts. A small number of subjects from the Tier 1 study partici-
pants (n = 555) were randomly selected, to test innovative data 
collection strategies as a part of data collection platform for tem-
poral-spatial activity patterns. Forty four study participants (6 
males and 38 females) provided written informed consent and 
agreed to participate in the GPS data collection. The observa-
tion period was one week and study participants were asked to 
wear it upon waking. They were also asked to record the places 
they visited during the week when they were wearing the GPS. 
In this study, time location data of 38 female subjects were ana-
lyzed. Male participants were excluded primarily due to small 
sample size, and major gender difference in time use and activity 
patterns. The average age of the subjects was 46 years old, ranged 
between 23 and 81. 

Participants were asked to wear a small portable GPS device 
attached to their waist in a small pouch. The GPS we selected 
(Mini Tracker-MT4100; SkyTRX, Crestview, FL, USA) was 
found to have spatial accuracy within 2.5 meters outdoors. 
Among the four devices (Garmin 60, Olathe, KS, USA; Garmin 
Forerunner 201, Olathe, KS, USA; Geostats GeoLogger, Atlan-
ta, GA, USA; Skytrax Minitracker MT4100, Crestview, FL, 
USA) tested for accuracy, portability, battery life, cost and map-
ping capability, it was selected as the most reliable one for time 
location measurement [14]. It can store data up to 100 hours 
(about 360,000 data points) with time interval of second that 
are sufficient to capture the movement of subjects outdoors. 
The unit has a universal serial bus port and data were download-
ed onto a computer by study personnel during their field visits 
and processed using Skytech software that interfaced with the 
internet, providing both the actual GPS locations at each time 
and a record of times spent at each residential block. 

The GPS provided geographic location and time continuously 
for the 7-day period in 2007-2008. Preprocessing works were re-
quired to convert GPS-collected data into data usable in the 
analyses. These steps include, identifying geographic coordinates 
(latitude and longitude) of data points and converting them into 
Universal Transverse Mercator coordinate system in mile, as well 
as identifying routes of movement, time spent at a specific loca-
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tion, and outlier detection/removal. Possibly missing and outly-
ing data points were checked in pre-processing steps, based on 
the information obtained from the logged GPS data, including 
geographic coordinates, elevation, speed of movement, dura-
tion, and strengths of signals, and activity log of participants. For 
example, routes of movement could be identified by connecting 
the points by temporal orders, and were used to identify outly-
ing values. When participants recorded no outdoor activities on 
specific date in their activity logs, we also excluded the corre-
sponding GPS data. Further, outdoor location and the time 
spent outdoors were identified from individual data points with 
at least one-minute of duration, because it will reduce possible 
loss of the GPS data due to signal dropouts. Most GPS data were 
recorded when the device was in outdoors, thus our study in-
cluded all the moving data points with over 1 minute of time du-
ration as outdoor measured points.  

Time-location data were collected only for study participants 
who made a trip during the seven day time periods (229 days). 
The GPS time location data resulted in a total of 23,629 minutes 
of measured data points over 7-day time periods of observation, 
average of 103 minutes of outdoor location data per person-day. 
The data implied that the subjects spent 7% of their time out-
doors. Because GPS did not record indoors and the gaps be-
tween outdoor time allowed us to quantify time spent indoors. 
Of the total 329,760 minutes time-location data, about 93% of 
them were classified as indoor locations. A new variable indicat-
ing time in a specific geographic location was created, and geo-
graphic coordinates for indoor locations were imputed using the 
measured GPS data values before and after the locations for 
outdoor activities lasted longer than 1-minute. Measured and 
imputed times spent outdoors and indoors were transferred 
into a GIS database system for spatial analysis and modeling. A 
prototype system consisting of a time-location database in GIS 
was built, then SDEs of study participants were generated to 
represent time-location variability using R aspace package [19].

Development of A-SDE and IW-SDW 

SDE was primarily employed to depict spatial distribution of 
study participants’ indoor and outdoor time-locations. SDE is 
one of the centrographic measures that are used to characterize 
the dispersion of points around mean center, and major steps 
for deriving SDEs are well described [20]; for a set of points, 
mean center values of x and y, the rotation angle of the ellipse, 
and lengths of the major and minor elliptical axes (standard de-
viations [SDs] of x, y) are determined to construct the SDEs. 
Two spatial measures were developed to model the time loca-
tion data in the study. First, the SDE at one SD that include ap-

proximately two-thirds of the participant’s measured outdoor 
location and time were created, and named as A-SDE. This loca-
tion-based spatial measure represents average size of time-loca-
tion variability only with outdoor location data. Second, we de-
veloped the IW-SDE with equal in- and outdoor weights, that 
represented both indoor and outdoor exposures based on time 
and exposure weights, because exposures may also occur in 
both indoor and outdoor locations.

Parameters of ellipses including two-dimensional centrality 
(mean center) and dispersion (SD) measures, and shape mea-
sure (eccentricity) were identified using the equations below. 
The size of an ellipse (A) was determined by,

A =  πSxSy

and the elongation of the ellipse often measured by its eccen-
tricity between the values of 0 and 1, was determined by,

where Sx is a SD of x-axis and Sy is a SD of y-axis, respectively 
[19,20].

Descriptive statistics of the size of two ellipses, including arith-
metic and geometric mean, SD, and percentile values were re-
ported, and the differences in the sizes between the two SDEs 
were tested after log transformation. The size of A-SDE and IW-
SDE were compared primarily by day type, weekdays (n = 168), 
defined as Monday through Friday, versus weekend (n = 61), 
Saturday and Sunday, in addition to daily variations. Employ-
ment status was also used as a primary determinant of variability 
in the size of ellipses during the week, thus subjects were grouped 
as employed (n = 8) and non-employed (n = 26), excluding 4 
subjects with missing employment status. As data were positively 
skewed, geometric mean and SD were primarily used to compare 
the mean sizes of the two SDEs, grouped by day type (weekday-
weekend) and by employment status. 

Results

Key parameters of the ellipses, including mean center of x and 
y, and SD of x and y from the mean center as two-dimensional 
centrality and dispersion measures respectively, are presented in 
Table 1. The mean centers by the two SDEs were within 1 mile 
for x and y coordinates (91.9 to 92.4, and 2589.3 to 2589.8, re-
spectively). With the standard deviation dispersion measure 
that primarily captures variation and direction of maximum dis-
persion of the in- and outdoor location points, we observed that 
A-SDE had the highest SD for x axes, while IW-SDE for y axes, 
indicating different orientation of the two ellipses. The shape 
measure of eccentricity showed slightly narrow shape of IW-

            e =     Sx − Sy                            e =     Sy − Sx

                            Sx         
, if Sx >  Sy,                   Sy         

, if Sx >  Sy
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SDE compared to the shape of A-SDE (0.30 and 0.19, respec-
tively), but both were close to circular form. 

The A-SDE and IW-SDE had considerable differences in the 
size of ellipse. Descriptive statistics of the size of ellipses for A-
SDE and IW-SDEs are presented in Table 2. Overall mean and 
median size of A-SDE were larger than those of IW-SDE; 
around the mean center, geometric mean of A-SDE was about 
36 square miles in size, while the corresponding IW-SDE was 
smaller, about 18 square miles in size, and the sizes of A-SDE 
and IW-SDE were significantly different (p < 0.001). The medi-
an sizes had similar patterns between the two SDEs (median of 
49 and 25 square miles for A-SDE and IW-SDE, respectively). 
For both SDEs, weekday SDEs were larger than the weekend 
SDEs, however, higher variability was observed in weekends 
than in weekdays. The sizes of A-SDE were larger than those of 
IW-SDE for both weekdays and weekend (Table 2). 

Variability of area by day of a week is shown in Figure 1. Over a 
week, both SDEs showed wide daily variation. The A-SDE ex-
hibited much higher variation in the size during the week com-
pared to the IW-SDE. We also found that A-SDEs were larger 
than IW-SDEs in all days. A peak on Monday was observed in 
A-SDE. Among the weekdays, the SDEs on Monday and Thurs-

day were higher than on the rest of the week. Both A-SDE and 
IW-SDEs on Wednesday and in weekend days were lower com-
pared to the ones for other days over the week. 

The SDEs were associated with employment status. The differ-
ences in ellipse size by day type (weekday/weekend) and em-
ployment status (employed/unemployed) are shown in Figure 2. 
A-SDEs were larger than IW-SDEs for all employment-day 
combinations. Average size of SDEs for unemployed subjects 
was larger than the one for employed subjects during weekdays, 
while it was smaller during weekends. Patterns of weekday and 
weekend were different for employment status. Unemployed 
subjects had larger SDEs in weekday than in weekend, while 
employed subjects had larger SDEs in weekend. 

Discussion

We developed methods to model location-based and time-
weighted spatial measures using time location data collected by 
GPS. Because exposure can be affected by time spent at specific 
locations, and concentrations can be various in different loca-

Table 1. Parameters of ellipses, including mean center, standard deviation 
(SD) of x and y axes in miles, and shape measure (eccentricity) for A-SDE 
and IW-SDE 

A-SDE IW-SDE

Mean center (x) 91.9 92.4
Mean center (y) 2589.3 2589.8
SD of x-axis (mile) 4.63 4.38
SD of y-axis (mile) 4.55 4.59
Shape measure: eccentricitya 0.19 0.30

A-SDE, ambient standard deviational ellipse, IW-SDE, indoor time weighted 
standard deviational ellipse.
aObtained by length of focus divided by length of major axis.

Table 2. Areas (sq. miles) of ambient standard deviational ellipse (A-SDE) 
and indoor time-weighted standard deviational ellipse (IW-SDE) for all 7 
days and by day type (weekday-weekend days)

A-SDE IW-SDE

Arithmetic mean±SD 141.1±358.0 97.4±270.0
GSD 35.6 (6.5) 17.7 (7.1)
Percentiles 25% 13.3 5.2
                 50% 49.4 24.8
                 75% 70.7 54.8

By day typea 
Weekday, GSD 22.9 (19.2) 13.0 (19.1)
Weekend, GSD 2.9 (45.9) 0.8 (70.9)

SD, standard deviation; GSD, geometric standard deviation.
aWeekday (Monday-Friday) and Weekend (Saturday-Sunday).

Figure 2. Difference in ambient standard deviational ellipse (A-SDE) and  
indoor time-weighted standard deviational ellipse (IW-SDE) areas by 
employment status and day type (weekday-weekend days)(excluding 4 
subjects with unknown employment status).

Employed Unemployed
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Figure 1. Variability of ambient standard deviational ellipse (A-SDE) and 
indoor time-weighted standard deviational ellipse (IW-SDE) by day of a 
week; geometric mean sizes in square miles. 
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tions, we developed indoor time-weighted spatial measures to 
incorporate time duration for indoor locations. Such time-loca-
tion weight may provide better accuracy in assessing exposures 
associated with exposure opportunities at different microenvi-
ronments. When indoor time was taken into consideration, 
there were considerable differences between the sizes of A-
SDEs and IW-SDEs, indicating that exposure assessment based 
on only outdoor location might misclassify exposure potentials. 
We observed that the size of IW-SDEs was smaller than that of 
A-SDEs. This size difference may be due to the fact that IW-
SDEs consider the time spent indoors. 

There were consistent patterns observed when the ellipse was 
broken down by day type and employment (work/non-work 
and weekday/weekend). Such variability in location based mea-
sures between the SDEs was partially explained by these key 
variables. However, not all major determinants of IW-SDE were 
investigated due to the scope of our study. We limited our data 
analysis to women. Among primary determinants of time-use 
and activity are related to demographic (age, gender), employ-
ment, day type, lifestyle/life stage related factors [21]. Age was 
also used as one of the potential determinants of time-use and 
activity patterns. However, we have not included results by age 
group and/or day type, partly because of key characteristics of 
study sample (small sample size, female only, wide range of age 
across study participants), as well as study design (household-
based sampling, not individual-based) [18]. We have run addi-
tional analyses by age group and day type, however, we found 
that time-activity patterns of age groups should be interpreted 
with additional information on household structure (ex. exis-
tence of children), that may be a subject of another study. There 
is evidence suggesting gender role differences in time-use and 
activity participation, primarily the effects of employment and 
household maintenance related constraints on time-use and ac-
tivity among women; regardless of employment status, women 
are more likely constrained by gender-role related activities that 
women perform in their everyday lives. Women are more likely 
to take short and more frequent trips and participate in mainte-
nance activities than their male counterparts, thus are more like-
ly subject to spatial and temporal requirements of household 
maintenance and/or childcare responsibility-related activities 
[22]. As a consequence, while patterns may also vary by age, fe-
males tend to spend less out-of-home time during weekend 
[23]. Our data showed smaller SDEs in weekends indicating 
less movement. Such difference of movement in weekdays and 
weekends are also observed in other population [23,24]. 

Given the fact that trips are often linear and interrelated than 
circular patterns, we employed the ellipse, rather than a circle, to 
summarize and compare concentration and dispersion patterns 

of in-and outdoor locations. SDEs have been previously used to 
characterize patterns of human activities and associated travel 
behaviors, for example as a measure for approximate human 
space-time activity spaces [25,26]. As one of the added values 
of the newly developed spatial measure, our study expands the 
use of ellipse and related descriptive summary statistics of loca-
tional data by capturing both in- and outdoor exposure poten-
tials; by using the ellipse, we identified directional variation of 
the multiple indoor and outdoor locations for A-SDE and IW-
SDE. We were also able to compare approximate shape of the 
ellipse with the eccentricity measure. However, we primarily 
compared the size of measures in this study, because our aim 
was to develop such a measure to summarize overall patterns of 
human time-space behavior and the associated exposure poten-
tials as a pilot study. The spatial summary measure developed in 
this study is thus well-suited to describe the spatial scope for the 
spatially linked and interrelated sets of in- and outdoor location 
points. Furthermore, other features of the spatial measures, in 
addition to the size and shape used, could also be employed in a 
future study, especially when the purpose is to compare and 
represent spatial patterns and relationships among each individ-
ual location-time weighted ellipse. For instance, visually com-
paring the orientation of the each individual measures may be 
an effective way in future studies that relate actual exposure and 
time-location patterns. 

While strengths of the study include the richness of time-loca-
tion data collected by GPS, interpretation and generalizability 
of study findings may be limited by some constraints posed by 
data collection and analyses, including short time period of ob-
servation (a week) with small numbers of subjects. We cannot 
rule out the potential effects of other environmental factors (for 
example, weather condition/seasonality) on the observed 
weekly patterns. Further testing of the measures with additional 
factors may be needed. Personal exposure can be affected by mi-
cro-environmental concentration and the time subjects stayed 
in the microenvironment. In such microenvironmental model, 
time spent in indoor and outdoor locations may be critical for 
further personal exposure assessment. However, personal expo-
sure may be higher with longer indoor time if indoor concentra-
tion of pollutants is higher than outdoor. We were not able to 
provide direction of influence of indoor and outdoor exposure 
in this study. Furthermore, trip purpose/motive is not often 
identifiable from GPS-collected time-location data. Modes of 
transportation are not known in most case, thus there may be 
variations due to exposure in-car, in-transit, and ambient envi-
ronment. Recent studies in this context have been conducted to 
collect and analyze GPS-collected time location data associated 
with different microenvironments [27,28]. Further work is 
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needed to develop methods for collection and classification of 
time-location data in a more wide range of microenvironments 
(for example, more specific categories of indoor and outdoor 
microenvironments, including in-vehicle location), that may be 
more meaningful categories in the investigation of exposure and 
health outcomes, and to refine the models that complement the 
existing methods of collection and classification of time-loca-
tion data (for example, GIS capability and data layers). Despite 
the limitations, our findings showed exposure potential mea-
sures greatly vary by time-location, thus need to distinguish in-
door and outdoor location and time in health exposure studies.

The use of GPS data will likely improve the geographical de-
tails and accuracy of time-location data, making it feasible to use 
time-use and activity data collected to address exposure in small 
temporal and spatial scales. Our study indicated that GPS-col-
lected time location data could be used as an alternative in expo-
sure assessment incorporating complex space-time behavior, 
and thus effective in addressing the cross-sectional nature of ex-
posure and health assessment. A major contribution of this 
study is that a spatially explicit model was developed to summa-
rize and handle complex and large sets of GPS collected time-
location data, and that this is the first study to combine exposure 
opportunities associated with time at indoor and outdoor mi-
croenvironments; we were able to build a prototype system for 
spatial-temporal analysis involving GPS data, and demonstrated 
that importance of indoor exposure for spatially explicit sum-
mary measures. Further development and refinement of GPS 
data analysis system may provide the capability of tracing indi-
viduals and population groups through multiple context (for ex-
ample, indoor and outdoor, home, work-based location) and 
environment (health-promoting or health-damaging ones). The 
IW-SDE developed in this study may represent exposure op-
portunities more accurately, and thus may represent the interac-
tions between complex space-time behavior and exposure po-
tentials over meaningful units of time and space. Incorporating 
spatial-temporal patterns of human mobility may be of signifi-
cance in understanding human exposure behavior in space-time 
and its complex relationship with the environment, and further 
development of such a measure incorporating time of indoor 
and outdoor exposure is encouraged. 
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