• Title/Summary/Keyword: Indoor inhalation

Search Result 54, Processing Time 0.02 seconds

Concentrations and Exposure Levels via Intake of Phthalates in Dust Deposits in Indoor Children's Living Areas: Focusing on DEHP (어린이가 생활하는 실내공간의 바닥먼지 중 프탈레이트 농도와 노출수준: DEHP를 중심으로)

  • Jeon, Seong-ho;Kim, Kyung-hee;Choi, Jae-wook
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.1
    • /
    • pp.52-58
    • /
    • 2022
  • Background: Few studies have evaluated the exposure to phthalates via inhalation of floor dust in children's living areas. Objectives: This study evaluated the concentration and exposure level of phthalates emitted from indoor floor dust in children's living areas. Methods: This study utilized the results of a survey conducted by the Ministry of Environment in 2019. Indoor dust was collected from 150 households with children aged 3~7 and 67 daycare centers or local children's centers by using vacuum cleaners. It was analyzed by gas chromatography mass spectrometry. Six types of phthalates were analyzed: Bis (2-ethylhexyl) phthalate (DEHP), Dibutyl phthalate (DBP), Benzyl butyl phthalate (BBP), Di-N-octyl phthalate (DNOP), Diisononyl phthalate (DINP), Di -isodecyl phthalate (DIDP). Results: The medians of DEHP concentrations were 1,028 and 1,937 mg/kg in homes and daycare centers, respectively. The median and maximum values of daily intake were calculated by applying the median and 95th percentile values (the upper 5% of the total concentration) in dust measured in the homes. The DEHP median value was 1.6 ㎍/kg/bw/day, and a maximum A value of 7.8 ㎍/kg/bw/day was calculated. When the childcare center values were applied, the median daily intake of DEHP was 3.1 ㎍/kg/bw/day and the maximum value was 29.2 ㎍/kg/bw/day. As a result of calculating the daily intake by integrating the values of home and childcare facilities, the median and maximum values of daily intake were 1.9 and 10.9 ㎍/kg/bw/day, respectively. Conclusions: This study derives phthalate concentrations among the floor dust in homes and childcare facilities where children mainly spend time, and suggests their intake of phthalates through this. In particular, it was newly suggested that the phthalate concentrations in homes and childcare facilities are different, resulting in differences in intake.

Health Risk Assessment and Establishment of Exposure Limits for Children and Adults from Heavy Metals in Indoor Dust (실내 침적먼지 내 중금속 노출에 따른 어린이와 성인의 건강위해평가 및 노출기준 설정)

  • Gihong Min;Daehwan Kim;Sanghoon Lee;Hyeonsu Ryu;Jeong Kim;Jihun Shin;Kilyoong Choi;Mansu Cho;Youngtae Choe;Wonho Yang
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.5
    • /
    • pp.322-331
    • /
    • 2024
  • Background: The increase in population density and human activities due to urbanization and industrialization has led to the release of environmental pollutants through various pathways. These include air, water, and soil and result in environmental contamination. Objectives: This study aimed to conduct exposure and risk assessments for five non-carcinogenic and three carcinogenic heavy metals in indoor dust and sought to propose dust exposure limits for children and adults. Methods: The study collected and analyzed indoor dust from 20 households in Myeodo-dong, Yeosu, between June 28 and 30, 2023. The exposure scenario for indoor dust was assessed for children and adults, calculating inhalation, dermal, and ingestion exposures, followed by a risk assessment categorized into non-carcinogenic and carcinogenic substances. Exposure limits for heavy metals in indoor dust were determined by calculating concentrations where the hazard index (HI) for non-carcinogenic substances remains below 1 and the total cancer risk (TCR) for carcinogenic substances stays below 1×10-6. Results: The highest concentration of heavy metals in indoor dust was found for Zn, with a maximum value of 4912.01 ㎍/g, while Cd had the lowest concentration at 0.001 ㎍/g. There were strong positive correlations observed between Cu-Ni (0.590), Mn-Ni (0.706), Co-Zn (0.601), Co-Pb (0.930), Co-Cr (0.961), Zn-Pb (0.728), Zn-Ni (0.611), Zn-Cr (0.709), and Pb-Cr (0.982) (p<0.01). The assessment revealed no significant health risks for the five non-carcinogenic metals, as the HI remained below 1. However, two of the carcinogenic metals (Cd, Ni) exceeded the recommended exposure limits (TCR>1×10-6). The exposure limits for carcinogenic substances were found to be relatively lower compared to those for non-carcinogenic substances, and children had lower exposure limits than adults. Conclusions: This study focused on Myeodo-dong in Yeosu, a region vulnerable to environmental pollution, assessing the potential health risks and proposing exposure standards for eight heavy metals found in indoor dust. The results showed no significant health risk for the five non-carcinogenic metals (HI<1), while three of the two carcinogenic metals (Cd, Ni) exceeded safe exposure limits (TCR>1×10-6).

Public Exposure to Natural Radiation and the Associated Increased Risk of Lung Cancer in the Betare-Oya Gold Mining Areas, Eastern Cameroon

  • Joseph Emmanuel Ndjana Nkoulou II;Louis Ngoa Engola;Guy Blanchard Dallou;Saidou;Daniel Bongue;Masahiro Hosoda;Moise Godefroy Kwato Njock;Shinji Tokonami
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.59-67
    • /
    • 2023
  • Background: This study aims to reevaluate natural radiation exposure, following up on our previous study conducted in 2019, and to assess the associated risk of lung cancer to the public residing in the gold mining areas of Betare-Oya, east Cameroon, and its vicinity. Materials and Methods: Gamma-ray spectra collected using a 7.62 cm×7.62 cm in NaI(Tl) scintillation spectrometer during a car-borne survey, in situ measurements and laboratory measurements performed in previous studies were used to determine the outdoor absorbed dose rate in air to evaluate the annual external dose inhaled by the public. For determining internal exposure, radon gas concentrations were measured and used to estimate the inhalation dose while considering the inhalation of radon and its decay products. Results and Discussion: The mean value of the laboratory-measured outdoor gamma dose rate was 47 nGy/hr, which agrees with our previous results (44 nGy/hr) recorded through direct measurements (in situ and car-borne survey). The resulting annual external dose (0.29±0.09 mSv/yr) obtained is similar to that of the previous study (0.33±0.03 mSv/yr). The total inhalation dose resulting from radon isotopes and their decay products ranged between 1.96 and 9.63 mSv/yr with an arithmetic mean of 3.95±1.65 mSv/yr. The resulting excess lung cancer risk was estimated; it ranged from 62 to 216 excess deaths per million persons per year (MPY), 81 to 243 excess deaths per MPY, or 135 excess deaths per MPY, based on whether risk factors reported by the U.S. Environmental Protection Agency, United Nations Scientific Committee on the effects of Atomic Radiation, or International Commission on Radiological Protection were used, respectively. These values are more than double the world average values reported by the same agencies. Conclusion: There is an elevated level of risk of lung cancer from indoor radon in locations close to the Betare-Oya gold mining region in east Cameroon. Therefore, educating the public on the harmful effects of radon exposure and considering some remedial actions for protection against radon and its progenies is necessary.

Distribution of Allergen Reactivity in Serum of Allergy Patients

  • Jung, An Na;Jun, Jin Hyun;Hur, Sung Ho;Seong, Hee Kyung
    • Biomedical Science Letters
    • /
    • v.19 no.4
    • /
    • pp.315-329
    • /
    • 2013
  • This study was conducted to evaluate the distribution, frequency, sensitization rate, and types of specific allergen in allergic patients. We analyzed allergens of 12,882 allergic patient's serum referred for Medical Laboratory using MAST Allergy Screen Test (Inhalation/food panel) from April, 2010 to March, 2011. Allergen reactivity were not detected in 833/12,882 (6.5%) allergic patients and the other allergic patients had two or more types of allergens of food and inhalant, respectively. In the distribution of the allergen food 73.4% (9,450/12,882 patients) was much higher than the pollen 26.6% (3,432/12,882 patients). The sensitization rate to each allergen showed garlic 26.7%, egg white 21.5% of food allergens, mugwort 24.9%, ragweed short 19.6% of pollen allergens, Candida albicans 10.5%, Alternaria spp. 7.9% of fungus allergens, and showed high sensitized rate to Dermatophagoides farinae 90.2%, Dermatophagoides pteronyssinus 77.8%, house dust 57% of indoor allergens, respectively. The specific allergens of food allergen, fungus allergen, and indoor allergen were more frequent in young child than adult, but pollen allergens were frequent in adult than young child. In seasonal distribution, the food allergen were frequent in summer and autumn, the pollen allergen in autumn, fungus allergen in spring and in winter, and indoor allergen in autumn and in winter. In conclusion, the mite of Dermatophagoides farinae and Dermatophagoides pteronyssinus, and house dust showed the highest sensitization rate in specific allergen of allergic patients. The allergens showed difference feature according to the age, region, and types of allergen.

Radon Blocking Effect of Mask used in Everyday Life (일상생활에서 사용하는 마스크의 라돈 차단 효과)

  • Cheon, Se-Hyeon;Lee, Yong-Ki;Ahn, Sung-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.313-318
    • /
    • 2020
  • Since radon is an inert gas and is a monoatomic molecule, the size of one particle represents the size of an atom, which means that it has a radius of approximately 1 to 100 nm. Therefore, if the mask has a radius smaller than the size of general fine dust and ultra fine dust, but it is possible to block the inhalation of radon more than a certain amount, it is considered that the exposure through the inhalation of radon can be reduced through normal indoor wear. Accordingly, we would like to find out the radon blocking effect of a mask worn in everyday life. Looking at the reduction rate of radon for each mask, cotton masks decreased by 33.45%, medical masks by 33.50%, KF 80 masks by 35.12%, and KF 94 masks by 37.72%. It was found that the radon blocking effect of the cotton and medical masks was somewhat inferior to that of the KF mask, but the difference was not so great that the introduction of radon into the air could be blocked to a certain level by wearing a mask.

Analysis of Exposure Characteristics and Exposure Rating of Participants with Injuries from CMIT/MIT Humidifier Disinfectants (CMIT/MIT 가습기살균제 사용에 따른 피해구제 신청자의 노출등급 및 노출특성 분석)

  • Gihong Min;Junghyun Shin;Eun-Kyung Jo;Seula Lee;Jihun Shin;Dongjun Kim;Jaemin Woo;Yoon-Hyeong Choi;Wonho Yang
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.3
    • /
    • pp.169-177
    • /
    • 2023
  • Background: The Korea Centers for Disease Control and Prevention (KCDC) has identified cases of people suspected of suffering lung disease potentially caused by chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT) used in humidifier disinfectants (HDs). The Korean Ministry of Environment (MoE) epidemiological investigation and toxicity test study found that HDs caused health damage such as asthma and lung disease. Objectives: The main purposes of this study were to classify the HD exposure rating and to analyze the exposure characteristics that affect exposure to CMIT/MIT HDs. Methods: The exposure characteristics and socio-demographic characteristics of victim participants using CMIT/MIT HDs were investigated through questionnaires. An inhalation no observed adverse effect level (NOAEL) for CMIT/MIT was produced based on inhalation toxicity values. Exposure ratings (class 1~class 2) were cross-tabulated with clinical ratings (acceptable~unacceptable). A correlation analysis was conducted with the main exposure characteristics that affect the exposure concentration of CMIT/MIT HDs. Results: The concentration in indoor air of CMIT/MIT was 8.75±25.40 ㎍/m3, and the exposure concentration was 2.30±6.29 ㎍/m3. The CMIT/MIT exposure rating of 67 participants with high exposures of not more than MOE 100 were evaluated as 14.5%, while the damage participants who matched the clinical rating made up 4.5%. The exposure concentration of CMIT/MIT showed a positive correlation with the daily usage amount and usage frequency, and a negative correlation with volume of the indoor environment. Conclusions: A new exposure rating could be suggested and calculated based on the MOE, and the factors affecting the exposure concentration could be identified.

Assessing PM2.5 Exposure and Contribution Rates by Cluster Microenvironments via a Time-Use Survey (생활시간조사 자료를 활용한 인구집단별 국소환경 초미세먼지(PM2.5) 노출 및 기여율 평가)

  • Sanghoon Lee;Youngtae Choe;Daehwan Kim;Jihun Shin;Kyunghwa Sung;Jeong Kim;Gihong Min;Wonho Yang
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.5
    • /
    • pp.311-321
    • /
    • 2024
  • Background: People spend 80~90% of their day indoors, with only 10~20% of their time spent outdoors. Evaluating exposure accurately requires assessments based on an individual's time-activity pattern. Objectives: The purpose of this study is to evaluate the exposure and contribution rates of PM2.5 by microenvironment, identify related exposure factors, and suggest management measures and priorities. Methods: This study analyzed the time-activity patterns of 3,984 weekday respondents in Seoul using data from the 2014 Time-Use Survey by Statistics Korea. The respondents were clustered, and occupational groups were estimated by conducting a frequency analysis of sociodemographic factors. Location data was collected at 10-minute intervals, followed by exposure scenario construction and active simulations. When calculating the exposure and contribution rates of PM2.5, the Korean exposure factors handbook was used to account for inhalation rates. Results: Most of the indoor microenvironments where people spend their time are residential. Students spend the most time indoors at 22.7 hours per day, followed by senior citizens at 22.5 hours, office workers at 22.0 hours, and stay-at-home parents at 21.8 hours. Although people spend little time in spaces such as outdoors, in transportation, and other indoor microenvironments, higher PM2.5 concentrations significantly increase the contribution rates. Among all clusters, even though cluster 10 (office workers) and cluster 2 (night security workers) spend relatively little time in other indoor microenvironments, such as Korean barbecue restaurants and pubs, they were included in the scenarios, resulting in higher exposure concentrations and contribution rates. Conclusions: The analysis of PM2.5 exposure contribution rates by microenvironment revealed that the highest exposure occurred in the 'other indoor' category, with Korean barbecue restaurants showing the highest concentration levels among them. Based on the PM2.5 exposure contribution rates in the microenvironments, this study suggests priority locations and population groups for targeted management.

Design Development of wall mount type air purifier (벽걸이 형식을 도입한 공기청정기 디자인 개발)

  • Han, Il-Woo
    • Archives of design research
    • /
    • v.18 no.3 s.61
    • /
    • pp.219-222
    • /
    • 2005
  • This study is for the design developement of wall mount air purification device used for pleasant and clean resident environment. As more people have the high standard of living, they are interested in the air quality of indoor environment, since it is believed its relationship with human health. Now the social demand of air purifier is increasing. Its market is growing and there are various design products in the market. However, dominant current products are floor-based standing type, it needs much spaces to install for the air inhalation and exhaust. Therefore, this product provides the space-saved design. Its concept comes from existing wall mount type air conditioners. The effect of wall decoration is another merit of this proposal. It has an easy filtering change and cleaning system and a simple operation of multiple functions. This product also has the perfect-matched slim design that is consist of natural curves with rectangle for any indoor spaces.

  • PDF

Natural radioactivity level in fly ash samples and radiological hazard at the landfill area of the coal-fired power plant complex, Vietnam

  • Loan, Truong Thi Hong;Ba, Vu Ngoc;Thien, Bui Ngoc
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1431-1438
    • /
    • 2022
  • In this study, natural radioactivity concentrations and dosimetric values of fly ash samples were evaluated for the landfill area of the coal-fired power plant (CFPP) complex at Binh Thuan, Vietnam. The average activity concentrations of 238U, 226Ra, 232Th and 40K were 93, 77, 92 and 938 Bq kg-1, respectively. The average results for radon dose, indoor external, internal, and total effective dose equivalent (TEDE) were 5.27, 1.22, 0.16, and 6.65 mSv y-1, respectively. The average emanation fraction for fly ash were 0.028. The excess lifetime cancer risks (ELCR) were recorded as 20.30×10-3, 4.26×10-3, 0.62×10-3, and 25.61×10-3 for radon, indoor, outdoor exposures, and total ELCR, respectively. The results indicated that the cover of shielding materials above the landfill area significantly decreased the gamma radiation from the ash and slag in the ascending order: Zeolite < PVC < Soil < Concrete. Total dose of all radionuclides in the landfill site reached its peak at 19.8 years. The obtained data are useful for evaluation of radiation safety when fly ash is used for building material as well as the radiation risk and the overload of the landfill area from operation of these plants for population and workers.

Life-Road : Development of an Emergency Evacuation Application using Augmented Reality and Beacon (Life-Road : 증강현실과 비콘을 사용하는 긴급대피용 애플리케이션 개발)

  • Myeon-gyun Cho
    • Journal of Digital Policy
    • /
    • v.2 no.4
    • /
    • pp.11-15
    • /
    • 2023
  • Recently, a fire suddenly broke out in a crowded theater, and many people were unable to find an escape route, becoming entangled, injured, and suffocating from smoke inhalation, resulting in a large-scale fire accident. Even though most of the people were young, they were unable to evacuate. If they had been elderly, it could have resulted in greater casualties. In particular, since it is difficult to receive accurate location information from GPS indoor, there is an urgent need for location-based services using beacons and an emergency evacuation system that intuitively shows evacuation routes in augmented reality using smart-phones. In this paper, an augmented reality-based emergency evacuation smartphone app was developed based on identifying fire locations and evacuation routes using beacons and fire sensors (IoT). In the future, if the proposed system is applied to indoor spaces where people are crowded, rapid evacuation will be possible even in a sudden fire accident, minimizing human damage.