• Title/Summary/Keyword: Indoor Location System

Search Result 448, Processing Time 0.025 seconds

Deep Learning-based Indoor Positioning System Using CSI (채널 상태 정보를 이용한 딥 러닝 기반 실내 위치 확인 시스템)

  • Zhang, Zhongfeng;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.4
    • /
    • pp.1-7
    • /
    • 2020
  • Over the past few years, Wi-Fi signal based indoor positioning system (IPS) has been researched extensively because of its low expenses of infrastructure deployment. There are two major aspects of location-related information contained in Wi-Fi signals. One is channel state information (CSI), and one is received signal strength indicator (RSSI). Compared to the RSSI, the CSI has been widely utilized because it is able to reveal fine-grained information related to locations. However, the conventional IPS that employs a single access point (AP) does not exhibit decent performance especially in the environment of non-line-of-sight (NLOS) situations due to the reliability degeneration of signals caused by multipath fading effect. In order to address this problem, in this paper, we propose a novel method that utilizes multiple APs instead of a single AP to enhance the robustness of the IPS. In our proposed method, a hybrid neural network is applied to the CSIs collected from multiple APs. By relying more on the fingerprint constructed by the CSI collected from an AP that is less affected by the NLOS, we find that the performance of the IPS is significantly improved.

Toward A Totally Solving Interference Problem for Ultrasound Localization System (초음파 위치인지 시스템의 간섭 문제의 해결을 위한 연구)

  • Song, Byung-Hun;Ham, Kyung-Sun;Lee, Hyung-Su
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.177-178
    • /
    • 2006
  • The real-time tracking system is an essential factor for the development of low cost sensor networks for use in pervasive computing and ubiquitous networking. In this paper, we address the interference problems of the sensor network platform with ultrasonic for location tracking system. Ubiquitous indoor environments often contain substantial amounts of metal and other such reflective materials that affect the propagation of radio frequency signals in non-trivial ways, causing severe multi-path effects, dead-spots, noise, and interference. Especially we present a novel reducing interference location system that is particularly well suited to support context-aware computing. The system called Pharos, aims to combine the advantages of real-time tracking systems that implement distributed environment with regardless of infrastructure or infrastructure-less wireless sensor networks.

  • PDF

Position Information Acquisition Method Based on LED Lights and Smart Device Camera Using 3-Axis Moving Distance Measurement (3축 이동량 측정을 이용한 LED조명과 스마트단말 카메라기반 위치정보 획득 기법)

  • Jung, Soon-Ho;Lee, Min-Woo;Kim, Ki-Yun;Cha, Jae-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.226-232
    • /
    • 2015
  • As the age of smart device has come, recently many application services related to smart phone are developing. The LBS(Location Based Service) technique is considered as one of the most important techniques to support location based application services. Usually the smart phone acquires the information of position by using the position recognition systems and sensors such as GPS(Global Positioning System) and G-Sensor. However, since the GPS signal from the satellite can hardly be received in the indoor environments, new LBS techniques for the indoor environment are required. In this paper, to solve the problem a position information transceiver using LED lights and smart phone camera sensor is proposed. We proved the possibility of the proposed positioning system through the experiments in the laboratory for the practical verification.

An indoor localization approach using RSSI and LQI based on IEEE 802.15.4 (IEEE 802.15.4기반 RSSI와 LQI를 이용한 실내 위치추정 기법)

  • Kim, Jung-Ha;Kim, Hyun-Jun;Kim, Jong-Su;Lee, Sung-Geun;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.92-98
    • /
    • 2014
  • Recently, Fingerprint approach using RSSI based on WLAN has been many studied in order to construct low-cost indoor localization systems. Because this technique is relatively evaluated non-precise positioning technique compared with the positioning of Ultra-Wide-Band(UWB), the performance of the Fingerprint based on WLAN should be continuously improved to implement various indoor location. Therefore, this paper presents a Fingerprint approach which can improve the performance of localization by using RSSI and LQI contained IEEE 802.15.4 standard. The advantages of these techniques are that the characteristics of each location is created more clearly by utilizing RSSI and LQI and Fingerprint technique is improved by using the modified Euclidean distance method. The experimental results which are applied in NLOS indoor environment with various obstacles show that the accuracy of localization is improved to 22% compared to conventional Fingerprint.

Radio Frequency Based Emergency Exit Node Technology

  • Choi, Youngwoo;Kim, Dong Kyoo;Kang, Do Wook;Choi, Wan Sik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.91-100
    • /
    • 2013
  • This paper introduces an indoor sensor fusion wireless communication device which provides the Location Based Service (LBS) using fire prevention facility. The proposed system can provide information in real time by optimizing the hardware of Wi-Fi technology. The proposed system can be applied to a fire prevention facility (i.e., emergency exit) and provide information such as escape way, emergency exit location, and accident alarm to smart phone users, dedicated terminal holders, or other related organizations including guardians, which makes them respond instantly with lifesaving, emergency mobilization, etc. Also, the proposed system can be used as a composite fire detection sensor node with additional fire and motion detect sensors.

The 3 Dimensional Triangulation Scheme based on the Space Segmentation in WPAN

  • Lee, Dong Myung;Lee, Ho Chul
    • Journal of Engineering Education Research
    • /
    • v.15 no.5
    • /
    • pp.93-97
    • /
    • 2012
  • Most of ubiquitous computing devices such as stereo camera, ultrasonic sensor based MIT cricket system and other wireless sensor network devices are widely applied to the 2 Dimensional(2D) localization system in today. Because stereo camera cannot estimate the optimal location between moving node and beacon node in Wireless Personal Area Network(WPAN) under Non Line Of Sight(NLOS) environment, it is a great weakness point to the design of the 2D localization system in indoor environment. But the conventional 2D triangulation scheme that is adapted to the MIT cricket system cannot estimate the 3 Dimensional(3D) coordinate values for estimation of the optimal location of the moving node generally. Therefore, the 3D triangulation scheme based on the space segmentation in WPAN is suggested in this paper. The measuring data in the suggested scheme by computer simulation is compared with that of the geographic measuring data in the AutoCAD software system. The average error of coordinates values(x,y,z) of the moving node is calculated to 0.008m by the suggested scheme. From the results, it can be seen that the location correctness of the suggested scheme is very excellent for using the localization system in WPAN.

Advanced Indoor Location Tracking Using RFID (RFID를 이용한 개선된 실내 위치 추적)

  • Joo, Won-lee;Kim, Hyo-Sun;Jung, Yeong-Ah;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.425-430
    • /
    • 2017
  • RFID is a technology that uses radio frequency to read information in tags attached to objects or people. Because it reads the information without contact when tracking the location using tags in a RFID system, there can be errors between the actual position and measured position. In this paper, three methods (the method of radiation pattern, the method of the median value, and the method using both the radiation pattern and median value) are proposed to identify the location of objects or people using the RFID technique. The location identification system based on RFID was constructed and tags were arranged in a square pattern. The real location and experimentally predicted location of an object containing a reader were compared to confirm the error. Instead of the existing papers that obtained the approximately location of a reader by calculating the center of gravity of all tags read by that reader, in this study, the predicted location was obtained by the median value and the radiation pattern. This study validated which method was the most efficient among the three methods proposed in this paper through the data of the read tags. As a result, the method of the median value had the smallest error among those assessed.

Status of particulate matter pollution in urban railway environments (도시철도 환경의 미세먼지 오염 현황)

  • Kim, Jong Bum;Lee, Seung-Bok;Bae, Gwi-Nam
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.303-314
    • /
    • 2018
  • The urban railway system is a convenient public transportation system, as it carries many people without increasing traffic congestion. However, air quality in urban railway environments is worse than ambient air quality due to the internal location of the source of air pollutants and the isolated space. In this paper, characteristics of particulate matter (PM) pollution in urban railway environments are described from the perspective of diurnal variation, chemical composition and source apportionment of PM. PM concentrations in concourse, platform, passenger cabin, and tunnel are summarized through an analysis of 34 journal articles published in Korea and overseas. This information will be helpful in developing effective policies to reduce PM pollution in urban railway environments.

Supplementation of the Indoor Location Tracking Techniques Based-on Load-Cells Mechanism (로드셀 기반의 실내 위치추적 보완 기법)

  • YI, Nam-Su;Moon, Seung-Jin
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.1-8
    • /
    • 2016
  • Current indoor intrusion detection and location tracking methods have the weakness in seamless operations in tracking the objective because the object must possess a communicating device and the limitation of the single cell size (approximate $100cm{\times}100cm$) exits. Also, the utilization of CCTV technologies show the shortcomings in tracking when the object disappear the area where the CCTV is not installed or illumination is not enough for capturing the scene (e.g. where the context-awarded system is not installed or low illumination presents). Therefore, in this paper we present an improved in-door tracking system based on sensor networks. Such system is built on a simulated scenario and enables us to detect and extend the area of surveillance as well as actively responding the emergency situation. Through simulated studies, we have demonstrated that the proposed system is capable of supplementing the shortcomings of signal cutting, and of estimating the location of the moving object. We expect the study will improve the better analysis of the intruder behavior, the more effective prevention and flexible response to various emergency situations.

Cooperative Positioning System Using Density of Nodes (노드의 밀도를 이용한 상호 협력 위치 측정 시스템)

  • Son, Cheol-Su;Yoo, Nem-Hyun;Kim, Wong-Jung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.198-205
    • /
    • 2007
  • In ubiquitous environment a user can be provided with context-aware services based on his or her current location, time, and atmosphere. LBS(Location-Based Services) play an important role for ubiquitous context-aware computing. Because deployment and maintenance of this specialized equipment is costly, many studies have been conducted on positioning using only wireless equipment under a wireless LAN infrastructure. Because a CPS(Cooperative Positioning System) that uses the RSSI (Received Signal Strength Indicator) between mobile equipments is more accurate than beacon based positioning system, it requires great concentration in its applications. This study investigates the relationship between nodes by analyzing a WiPS (Wireless LAN indoor Positioning System), a similar type of CPS, and proposes a improved WiCOPS-d(Wireless Cooperative Positioning System using node density) to increase performance by determining the convergence adjustment factor based on node density.