• Title/Summary/Keyword: Indoor(basement)

Search Result 27, Processing Time 0.023 seconds

Characterization of Indoor Temperature and Humidity in Low-income Residences over a Year in Seoul, Korea

  • Lee, Daeyeop;Lee, Kiyoung;Bae, Hyunjoo
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.184-193
    • /
    • 2017
  • People spend the majority of their time in indoor environments. Maintaining adequate indoor temperature and humidity is necessary to support health and improve quality of life. However, people with low incomes can be vulnerable because they may not be able to use effective cooling and heating systems in their homes. In this study, the indoor temperature and humidity in low-income residences over a year in Seoul, Korea was characterized. Indoor temperature and humidity were measured in three types of homes (12 rooftop residences, 16 basement residences, and 18 public rental apartments) occupied by low-income residents. Both differed significantly among the three types of residence, particularly during the summer and winter seasons. A regression model between indoor and outdoor temperature detected a heating threshold at $3.9^{\circ}C$ for rooftop residences, $9.9^{\circ}C$ for basement residences, and $17.1^{\circ}C$ for public rental apartments. During tropical nights and cold-wave advisory days, rooftop residences showed the most extreme indoor temperatures. This study demonstrates that people living in rooftop residences could be at risk from extreme hot and cold conditions.

A study on the survey and reduction of indoor asbestos concentration (실내의 석면농도 실태 조사 및 저감에 관한 연구)

  • Seo, Byong-Won;Lee, Ju-Hwa;Park, Jihoon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.3
    • /
    • pp.325-337
    • /
    • 2014
  • The research on the actual condition of indoor asbestos concentration in Korea has not been thoroughly accomplished up to now. In this research the ratio of asbestos-containing buildings and indoor asbestos concentration was studied. This investigation was conducted in 2012 and 2013 and buildings were categorized based on region, building type by use, existing space(ground or basement), and construction year, respectively. Also the indoor asbestos concentration change was monitored to evaluation the efficiencies of two types of asbestos-concentration abatement devices. As a result, the ratio of asbestos-containing buildings in Seoul was largely decreased. The ratio of asbestos-containing buildings was higher in hospitals and schools regionally and in ground buildings than in basement. The average indoor asbestos concentrations were 0.0011, 0.0008 piece/cc in 2012 and 2013 investigation, respectively. Those values were much lower than standards(0.01 piece/cc), therefore the threat of indoor asbestos concentration might be negligible. In asbestos-concentration abatement experiments, the circulation velocity of ventilator were changed 2-6.7 m/sec. With 6.7 m/sec of velocity of ventilator, the concentration of indoor asbestos was fluctuated and maximum value was 2.4 piece/cc. With 4.5 and 2 m/sec of velocities of ventilator, the maximum concentration of indoor asbestos was fluctuated and maximum value was 0.9 piece/cc. This indicated that the concentration of indoor asbestos was decreased partly due to the free drop of asbestos. From these results, the proper velocity of ventilator seems to be between 4.7 and 6.5m/sec under this circumstance and further research is required. These research results may be used to guideline of asbestos management policy.

A Survey of Indoor and Outdoor Radon Concentrations by Alpha Track Detector in Korea (Alpha Track Detector를 이용한 실내외 라돈 농도조사에 관한 연구)

  • ;;;Takao Iida
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.71-76
    • /
    • 2002
  • A survey of radon concentrations in both indoor and outdoor atmospheres was carried out using EIRM and Cup Monitor for the period of February 1996 to March 1997. EIRM were used to measure the indoor and outdoor radon concentration at five major cities university. Cup Monitor were also used to measure the indoor radon concentrations at shopping store, office building, apartment, hospital and house in Seoul. The mean indoor and outdoor radon concentrations at the five major cities(Seoul, Daegu, Daejon, Cwangiu and Busan) were 24.1 Bq/m$^3$and 8.62 Bq/m$^3$, respectively. The ratio of indoor to outdoor radon concentrations ranged front 1.7 to 3.9. Inspection of its seasonal distribute pattern indicates the enhancement during winter relative to summer, consistently for both indoor and outdoor air. The results of the survey showed that the concentrations in basements were clearly higher than those in usual living/working places.

A Study on the Estimations of the Indoor Natural Temperature in the Underground Space (지중공간(地中空間)의 자연실온(自然室溫) 추정(推定)에 관(關)한 연구(硏究))

  • Lee, Shi Woong;Shon, Jang Yeul
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.3
    • /
    • pp.249-256
    • /
    • 1988
  • The purpose of this paper is to research the estimations of the indoor natural temperature in a case of the earth sheltered space and the 1st basement room in comparison with a conventional housing. The result of this study can be summerized as follows: The natural temperature of the earth sheltered house Summer : $${\theta}es=27.0+1.65sin(2{\pi}/24{\cdot}T-1.34)$$ Winter : $${\theta}ew=11.5+1.15sin(2{\pi}/24{\cdot}T-1.61)$$ The natural temperature of the 1st basement space Summer : $${\theta}us=25.5+1.00sin(2{\pi}/24{\cdot}T-1.72)$$ Winter : $${\theta}uw=13.9+1.10sin(2{\pi}/24{\cdot}T-2.29)$$ From the results of the stated above, we can calculate the cooling and heating load in the earth sheltered house and the underground space exactly and easily at Taejeon City.

  • PDF

Assessment of Human Exposures to Indoor Radon Released from Groundwater (지하수로부터의 실내 라돈오염시 인체노출평가)

  • 유동한;김상준;양지원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.3
    • /
    • pp.241-249
    • /
    • 2001
  • A report by the National Research Council in the United States suggested that many lung cancer deaths each year are associated with breathing radon in indoor air. Most of the indoor radon comes directly from soil beneath the basement of foundation. Recently, radon released from groundwater is found to contribute to the total inhalation risk from indoor air. This study presents the assessment of a exposure to radon released from the groundwater into indoor air. At first, a 3-compartment model is describe the transfer and distribution if radon released from groundwater in a house through showering, washing clothes, and flushing toilets. The model is used to estimate a daily human exposure through inhalation of such radon for adults based on two sets of exposure scenarios, Finally, a sensitivity analysis is used to identify important parameters. The results obtained from the study would help to increase the understanding of risk assessment issues associated with the indoor radon released from groundwater.

  • PDF

Inactivation of Indoor Airborne Fungi Using Cold Atmospheric Pressure Plasma (저온 대기압 플라즈마의 실내공기 중 곰팡이 생장억제 효과)

  • Paik, Namwon;Heo, Sungmin;Lee, Ilyoung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.351-357
    • /
    • 2019
  • Objectives: The objectives of this study were to investigate fungal contamination in a 31-year old university building in Seoul, Korea, and to study the inactivation of fungi using cold atmospheric pressure plasma(CAP). Methods: To investigate the fungal contamination in a university building, air samples were collected from five locations in the building, including two study rooms, a storage room, a laboratory, and a basement. The sampling was performed in a dry season(February to April) and in a wet season(July). To study the inactivation efficacy of fungi by CAP, airborne fungal concentrations were measured before and after the operation of the CAP generator. Results: Humidity was an important factor affecting fungal growth. The airborne fungal concentrations determined in the wet season(July) were significantly higher than those determined in the dry season(February to April). In the basement, the values determined in the dry and wet season were 319 and $3,403CFU/m^3$, respectively. The inactivation efficiency of fungi by CAP was 83-90% over five to nine days of operation. Conclusions: The university building was highly contaminated by airborne fungi, especially in summer. It is concluded that humidity is an important factor affecting fungal growth and CAP is a highly useful technique for inactivation of indoor airborne fungi.

Towards Quantitative Assessment of Human Exposures to Indoor Radon Pollution from Groundwater

  • Donghan Yu;Lee, Han-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E2
    • /
    • pp.43-51
    • /
    • 2001
  • A report by the national research council in the United States suggested that many lung cancer deaths each year be associated with breathing radon in indoor air. Most of the indoor radon comes directly from soil beneath the basement of foundations. Recently, radon released from groundwater is found to contribute to the total inhalation risk from indoor air. This study presents the quantitative assessment of human exposures to radon released from the groundwater into indoor air. At first, a three-compartment model is developed to describe the transfer and distribution of radon released from groundwater in a house through showering, washing clothes, and flushing toilets. Then, to estimate a daily human exposure through inhalation of such radon for an adult. a physiologically-based pharmacokinetic(PBPK) model is developed. The use of a PBPK model for the inhaled radon could provide useful information regarding the distribution of radon among the organs of the human body. Indoor exposure patterns as input to the PBPK model are a more realistic situation associated with indoor radon pollution generated from a three-compartment model describing volatilization of radon from domestic water into household air. Combining the two models for inhaled radon in indoor air can be used to estimate a quantitative human exposure through the inhalation of indoor radon for adults based on two sets of exposure scenarios. The results obtained from the present study would help increase the quantitative understanding of risk assessment issues associated with the indoor radon released from groundwater.

  • PDF

Adsorption properties of magnesium oxide matrix using anthracite and vermiculite (안트라사이트와 버미큘라이트를 혼입한 산화마그네슘 경화체의 흡착특성)

  • Kim, Dae-Yeon;Pyeon, Su-Jeong;Lee, Dong-Hoon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.224-225
    • /
    • 2018
  • Modern people are more interested in the indoor environment as they spend more time indoors than in the past. Among the air pollutants in the indoor air, ladon gas is a colorless, tasteless, odorless, inert gas produced by nuclear decomposition of naturally occurring uranium in rocks and soils. It has been proven that ladon gas is introduced into the room through cracks on the floor of the building or basement wall, and it causes various diseases such as lung cancer when exposed to radon during human breathing. The US Environmental Protection Agency (EPA) specifies 4pCi / L as a necessary measure for radon, and the Korea Environmental Protection Agency has implemented comprehensive indoor radon management measures since 2007. Therefore, in this study, we intend to adsorb and reduce radon in indoor air pollutants.

  • PDF

Analysis of Propagation Characteristics in 6, 10, and 17 GHz Semi-Basement Indoor Corridor Environment (6, 10, 17 GHz 반지하 실내 복도 환경의 전파 특성 분석)

  • Lee, Seong-Hun;Cho, Byung-Lok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.555-562
    • /
    • 2022
  • This study measured and analyzed the propagation characteristics at frequencies 6, 10, and 17 GHz to discover the new propagation demands in a semi-basement indoor corridor environment for meeting the 4th industrial revolution requirements. The measured indoor environment is a straight corridor consisting of three lecture rooms and glass windows on the outside. The measurement scenario development and measurement system were constructed to match this environment. The transmitting antenna was fixed, and the frequency domain and time domain propagation characteristics were measured and analyzed in the line-of-sight environment based on the distance of the receiving antenna location. In the frequency domain, reliability was determined by the parameters of the floating intercept (FI) path loss model and an R-squared value of 0.5 or more. In the time domain, the root mean square (RMS) delay spread and the cumulative probability of K-factor were used to determine that 6 GHz had high propagation power and 17 GHz had low propagation power. These research results will be effective in providing ultra-connection and ultra-delay artificial intelligence services for WIFI 6, 5G, and future systems in a semi-basement indoor corridor environment.

Indoor Radon Levels in the Room of Kwanak Campus, Seoul National University (서울대학교 관악캠퍼스 지역에서의 실내 라돈농도 분포)

  • Je, Hyun-Kuk;Kang, Chigu;Chon, Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.425-430
    • /
    • 1998
  • The results of radon $(^{222}Rn)$ concentrations and working levels (WL) for forty rooms in Kwanak Campus, Seoul National University on granite bedrock of Jurassic age showed that radon concentration have mean value of 3.0 pCi/L and 0.011 for working level. A number of rooms where these values exceed the EPA's action level are five (13%). It was also suggested that indoor basement rooms in poor ventilation condition can be classified as extremely high radon risk zone having more than 4 pCi/L and 0.020 WL. It was proved that inflow of soil-gas was a primary factor that governs indoor radon level by comparison of soil-gas radon concentrations with indoor radon concentrations.

  • PDF