• Title/Summary/Keyword: Indicator Analysis

Search Result 2,296, Processing Time 0.037 seconds

Estimation of Chlorophyll-a Concentration in Nakdong River Using Machine Learning-Based Satellite Data and Water Quality, Hydrological, and Meteorological Factors (머신러닝 기반 위성영상과 수질·수문·기상 인자를 활용한 낙동강의 Chlorophyll-a 농도 추정)

  • Soryeon Park;Sanghun Son;Jaegu Bae;Doi Lee;Dongju Seo;Jinsoo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.655-667
    • /
    • 2023
  • Algal bloom outbreaks are frequently reported around the world, and serious water pollution problems arise every year in Korea. It is necessary to protect the aquatic ecosystem through continuous management and rapid response. Many studies using satellite images are being conducted to estimate the concentration of chlorophyll-a (Chl-a), an indicator of algal bloom occurrence. However, machine learning models have recently been used because it is difficult to accurately calculate Chl-a due to the spectral characteristics and atmospheric correction errors that change depending on the water system. It is necessary to consider the factors affecting algal bloom as well as the satellite spectral index. Therefore, this study constructed a dataset by considering water quality, hydrological and meteorological factors, and sentinel-2 images in combination. Representative ensemble models random forest and extreme gradient boosting (XGBoost) were used to predict the concentration of Chl-a in eight weirs located on the Nakdong river over the past five years. R-squared score (R2), root mean square errors (RMSE), and mean absolute errors (MAE) were used as model evaluation indicators, and it was confirmed that R2 of XGBoost was 0.80, RMSE was 6.612, and MAE was 4.457. Shapley additive expansion analysis showed that water quality factors, suspended solids, biochemical oxygen demand, dissolved oxygen, and the band ratio using red edge bands were of high importance in both models. Various input data were confirmed to help improve model performance, and it seems that it can be applied to domestic and international algal bloom detection.

Structural Changes in Rental Housing Markets and a Mismatch between Quartile Income and Rent (월세 임차시장의 구조적 변화에 따른 분위별 소득과 임대료 간의 부정합 분석)

  • JungHo Park;Taegyun Yim
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.17-37
    • /
    • 2023
  • The rental housing market in South Korea, specifically monthly rent with deposit, has been expanding over the last three decades (8.2% in 1990 to 21.0% in 2020), partly replacing the traditional Jeonse market. The distribution of rent has changed due to public rental subsidies and the emergence of luxury rental housing, while the distribution of rental household income has been polarized because of the emergence of rich renters. This study attempts to measure the structural changes in the rental market by developing a new indicator of income-rent mismatch. Using the seven series of the Korea Housing Survey, this study analyzed the changes in rent (reflecting the conversion rate) and income levels of rental households in 2006 (base year) and 10-15 years later (the analysis year) at the national level and at the spatial unit of 16 metropolitan cities and provinces (excluding Sejong), respectively, by dividing them into quartile data. The result reveals that rental housing was undersupplied in middle- and high-income rental housing due to the decline in the highest quartile (25%→18%) and the third quartile groups (25%→20%), while the supply of public rental housing expanded for the second quartile (25%→28%) and the lowest quartile (25%→35) groups. On the demand side, the highest income quartile shrank (25%→21%), while the lowest income quartile grew (25%→31%). Comparing the 16 metropolitan cities and provinces, there were significant regional differences in the direction and intensity of changes in rent and renter household income. In particular, the rental market in Seoul was characterized by supply polarization, which led to an imbalance in the income distribution of rental households. The structural changes in the apartment rental market were different from those in the non-apartment rental market. The findings of this study can be used as a basis for future regional rental housing markets. The findings can support securing affordable rental housing stock for each income quartile group on monthly rent and developing housing stability measures for a balance between income and rent distribution in each region.

Assessing forest net primary productivity based on a process-based model: Focusing on pine and oak forest stands in South and North Korea (과정기반 모형을 활용한 산림의 순일차생산성 평가: 남북한 소나무 및 참나무 임분을 중심으로)

  • Cholho Song;Hyun-Ah Choi;Jiwon Son;Youngjin Ko;Stephan A. Pietsch;Woo-Kyun Lee
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.400-412
    • /
    • 2023
  • In this study, the biogeochemistry management (BGC-MAN) model was applied to North and South Korea pine and oak forest stands to evaluate the Net Primary Productivity (NPP), an indicator of forest ecosystem productivity. For meteorological information, historical records and East Asian climate scenario data of Shared Socioeconomic Pathways (SSPs) were used. For vegetation information, pine (Pinus densiflora) and oak(Quercus spp.) forest stands were selected at the Gwangneung and Seolmacheon in South Korea and Sariwon, Sohung, Haeju, Jongju, and Wonsan, which are known to have tree nurseries in North Korea. Among the biophysical information, we used the elevation model for topographic data such as longitude, altitude, and slope direction, and the global soil database for soil data. For management factors, we considered the destruction of forests in North and South Korea due to the Korean War in 1950 and the subsequent reforestation process. The overall mean value of simulated NPP from 1991 to 2100 was 5.17 Mg C ha-1, with a range of 3.30-8.19 Mg C ha-1. In addition, increased variability in climate scenarios resulted in variations in forest productivity, with a notable decline in the growth of pine forests. The applicability of the BGC-MAN model to the Korean Peninsula was examined at a time when the ecosystem process-based models were becoming increasingly important due to climate change. In this study, the data on the effects of climate change disturbances on forest ecosystems that was analyzed was limited; therefore, future modeling methods should be improved to simulate more precise ecosystem changes across the Korean Peninsula through process-based models.

An Analysis of the Specialist's Preference for the Model of Park-Based Mixed-Use Districts in Securing Urban Parks and Green Spaces Via Private Development (민간개발 주도형 도시공원.녹지 확보를 위한 공원복합용도지구 모형에 대한 전문가 선호도 분석)

  • Lee, Jeung-Eun;Cho, Se-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.6
    • /
    • pp.1-11
    • /
    • 2011
  • The research was aimed to verify the feasibility of the model of Park-Based Mixed-Use Districts(PBMUD) around urban large park to secure private-based urban parks through the revision of the urban zoning system. The PBMUD is a type of urban zoning district in which park-oriented land use is mixed with the urban land uses of residents, advertising, business, culture, education and research. The PBMUD, delineated from and based on a new paradigm of landscape urbanism, is a new urban strategy to secure urban parks and to cultivate urban regeneration around parks and green spaces to enhance the quality of the urban landscape and to ameliorate urban environmental disasters like climate change. This study performed a questionnaire survey and analysis after a review of literature related to PBMUD. The study looked for specialists in the fields of urban planning and landscape architecture such as officials, researchers and engineers to respond to the questionnaire, which asked about degree of preference. The conclusions of this study were as follows. Firstly, specialists prefer the PBMUD at 79.3% for to 20.7% against ratio, indicating the feasibility of the model of PBMUD. The second, the most preferable reasons for the model, were the possibility of securing park space around urban parks and green spaces that assures access to park and communication with each area. The third, the main reason for non-preference for the model, was a lack of understanding of PBMUD added to the problems of unprofitable laws and regulations related to urban planning and development. These proposed a revision of the related laws and regulations such as the laws for planning and use of national land, laws for architecture etc. The fourth, the most preferred type of PBMUD, was cultural use mixed with park use in every kind of mix of land use. The degree of preference was lower in the order of use of commercial, residential, business, and education(research) when mixed with park use. The number of mixed-use amenities with in the park was found to be an indicator determining preference. The greater the number, the lower was preference frequencies, especially when related to research and business use. The fifth, the preference frequencies of the more than 70% among the respondents to the mixed-use ratio between park use and the others, was in a ratio of 60% park use and 40% other urban use. These research results will help to launch new future research subjects on the revision of zoning regulations in the laws for the planning and uses of national land and architectural law as well as criteria and indicators of subdivision planning as related to a PBMUD model.

A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining (카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.27-42
    • /
    • 2020
  • Traditional companies with offline stores were unable to secure large display space due to the problems of cost. This limitation inevitably allowed limited kinds of products to be displayed on the shelves, which resulted in consumers being deprived of the opportunity to experience various items. Taking advantage of the virtual space called the Internet, online shopping goes beyond the limits of limitations in physical space of offline shopping and is now able to display numerous products on web pages that can satisfy consumers with a variety of needs. Paradoxically, however, this can also cause consumers to experience the difficulty of comparing and evaluating too many alternatives in their purchase decision-making process. As an effort to address this side effect, various kinds of consumer's purchase decision support systems have been studied, such as keyword-based item search service and recommender systems. These systems can reduce search time for items, prevent consumer from leaving while browsing, and contribute to the seller's increased sales. Among those systems, recommender systems based on association rule mining techniques can effectively detect interrelated products from transaction data such as orders. The association between products obtained by statistical analysis provides clues to predicting how interested consumers will be in another product. However, since its algorithm is based on the number of transactions, products not sold enough so far in the early days of launch may not be included in the list of recommendations even though they are highly likely to be sold. Such missing items may not have sufficient opportunities to be exposed to consumers to record sufficient sales, and then fall into a vicious cycle of a vicious cycle of declining sales and omission in the recommendation list. This situation is an inevitable outcome in situations in which recommendations are made based on past transaction histories, rather than on determining potential future sales possibilities. This study started with the idea that reflecting the means by which this potential possibility can be identified indirectly would help to select highly recommended products. In the light of the fact that the attributes of a product affect the consumer's purchasing decisions, this study was conducted to reflect them in the recommender systems. In other words, consumers who visit a product page have shown interest in the attributes of the product and would be also interested in other products with the same attributes. On such assumption, based on these attributes, the recommender system can select recommended products that can show a higher acceptance rate. Given that a category is one of the main attributes of a product, it can be a good indicator of not only direct associations between two items but also potential associations that have yet to be revealed. Based on this idea, the study devised a recommender system that reflects not only associations between products but also categories. Through regression analysis, two kinds of associations were combined to form a model that could predict the hit rate of recommendation. To evaluate the performance of the proposed model, another regression model was also developed based only on associations between products. Comparative experiments were designed to be similar to the environment in which products are actually recommended in online shopping malls. First, the association rules for all possible combinations of antecedent and consequent items were generated from the order data. Then, hit rates for each of the associated rules were predicted from the support and confidence that are calculated by each of the models. The comparative experiments using order data collected from an online shopping mall show that the recommendation accuracy can be improved by further reflecting not only the association between products but also categories in the recommendation of related products. The proposed model showed a 2 to 3 percent improvement in hit rates compared to the existing model. From a practical point of view, it is expected to have a positive effect on improving consumers' purchasing satisfaction and increasing sellers' sales.

Interlaboratory Comparison of Blood Lead Determination in Some Occupational Health Laboratories in Korea (일부 산업보건기관들의 혈중연 분석치 비교)

  • Ahn, Kyu Dong;Lee, Byung Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.1
    • /
    • pp.8-15
    • /
    • 1995
  • The reliable measurement of metal in biological media in human body is one of critical indicators for the proper evaluation of its toxic effect on human health. Recently in Korea the necessity of quality assurance of measurement in occupational health and occupational hygiene fields brought out regulatory quality control program. Lead is often used as a standard metal for the program in both fields of occupational health and hygiene. During last 20 years lead poisoning was prevalent in Korea and still is one of main heavy metal poisoning and the capability of the measurement of blood lead is one of prerequisites for institute of specialized occupational health in Korea. Furthermore blood lead is most important indicator to evaluate lead burden of human exposure to lead and the reliable and accurate analysis is most needed whenever possible. To evaluate the extent of the interlaboratory differences of blood lead measurement in several well-known institute specialized in occupational health in Korea, authors prepared 68 blood samples from two storage battery industries and all samples were divided into samples with 2 ml. One set of 68 samples were analyzed by authors's laboratory(Soonchunhyang University Institute of Industrial Medicine: SIIM) and 40 samples of other set were analyzed by C University Institute of Industrial Medicine(CIIM) and the rest 28 samples of other set were analyzed by Japanese institute(K Occupational Health Center:KOHC). Authors also prepared test bovine samples which were obtained from Japanese Federation of Occupational Health Organization (JFOHO) for quality control. Authors selected 2 other well-known occupational health laboratories and one laboratory specialized for instrumental analysis. A total of 6 laboratories joined the interlaboratory comparison of blood lead measurement and the results obtained were as follows: 1. There was no significant difference in average blood lead between SIIM and CIIM in different group of blood lead concentration, and the relative standard deviation of two laboratories was less than 3.0%. On the other hand, there was also no significant difference of average blood lead between SIIM and KOHC with relative standard deviation of 6.84% as maximum. 2. Taking less than 15% difference of mean or less than 6 ug/dl difference in below 40 ug/dl in whole blood as a criteria of agreement of measurement between two laboratories, agreement rates were 87.5%(35/40) and 78.6%(22/28) between SIIM and CIIM, SIIM and KOHC respectively. 3. The correlation of blood lead between SIIM and CIIM was 0.975 (p=0.0001) and the regression equation was SIIM = 2.19 + 0.9243 ClIM, whereas the correlation between SUM and KOHC was O.965(p=0.0001) with the equation of SIIM = 1.91 + 0.9794 KOHC. 4. Taking the reference value as a dependent variable and each of 6 laboratories's measurement value as a independent variable, the determination coefficient($R^2$) of simple regression equations of blood lead measurement for bovine test samples were very high($R^2>0.99$), and the regression coefficient(${\beta}$) was between 0.972 and 1.15 which indicated fairly good agreement of measurement results.

  • PDF

Different Look, Different Feel: Social Robot Design Evaluation Model Based on ABOT Attributes and Consumer Emotions (각인각색, 각봇각색: ABOT 속성과 소비자 감성 기반 소셜로봇 디자인평가 모형 개발)

  • Ha, Sangjip;Lee, Junsik;Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.55-78
    • /
    • 2021
  • Tosolve complex and diverse social problems and ensure the quality of life of individuals, social robots that can interact with humans are attracting attention. In the past, robots were recognized as beings that provide labor force as they put into industrial sites on behalf of humans. However, the concept of today's robot has been extended to social robots that coexist with humans and enable social interaction with the advent of Smart technology, which is considered an important driver in most industries. Specifically, there are service robots that respond to customers, the robots that have the purpose of edutainment, and the emotionalrobots that can interact with humans intimately. However, popularization of robots is not felt despite the current information environment in the modern ICT service environment and the 4th industrial revolution. Considering social interaction with users which is an important function of social robots, not only the technology of the robots but also other factors should be considered. The design elements of the robot are more important than other factors tomake consumers purchase essentially a social robot. In fact, existing studies on social robots are at the level of proposing "robot development methodology" or testing the effects provided by social robots to users in pieces. On the other hand, consumer emotions felt from the robot's appearance has an important influence in the process of forming user's perception, reasoning, evaluation and expectation. Furthermore, it can affect attitude toward robots and good feeling and performance reasoning, etc. Therefore, this study aims to verify the effect of appearance of social robot and consumer emotions on consumer's attitude toward social robot. At this time, a social robot design evaluation model is constructed by combining heterogeneous data from different sources. Specifically, the three quantitative indicator data for the appearance of social robots from the ABOT Database is included in the model. The consumer emotions of social robot design has been collected through (1) the existing design evaluation literature and (2) online buzzsuch as product reviews and blogs, (3) qualitative interviews for social robot design. Later, we collected the score of consumer emotions and attitudes toward various social robots through a large-scale consumer survey. First, we have derived the six major dimensions of consumer emotions for 23 pieces of detailed emotions through dimension reduction methodology. Then, statistical analysis was performed to verify the effect of derived consumer emotionson attitude toward social robots. Finally, the moderated regression analysis was performed to verify the effect of quantitatively collected indicators of social robot appearance on the relationship between consumer emotions and attitudes toward social robots. Interestingly, several significant moderation effects were identified, these effects are visualized with two-way interaction effect to interpret them from multidisciplinary perspectives. This study has theoretical contributions from the perspective of empirically verifying all stages from technical properties to consumer's emotion and attitudes toward social robots by linking the data from heterogeneous sources. It has practical significance that the result helps to develop the design guidelines based on consumer emotions in the design stage of social robot development.

The Effect of Corporate SNS Marketing on User Behavior: Focusing on Facebook Fan Page Analytics (기업의 SNS 마케팅 활동이 이용자 행동에 미치는 영향: 페이스북 팬페이지 애널리틱스를 중심으로)

  • Jeon, Hyeong-Jun;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.75-95
    • /
    • 2020
  • With the growth of social networks, various forms of SNS have emerged. Based on various motivations for use such as interactivity, information exchange, and entertainment, SNS users are also on the fast-growing trend. Facebook is the main SNS channel, and companies have started using Facebook pages as a public relations channel. To this end, in the early stages of operation, companies began to secure a number of fans, and as a result, the number of corporate Facebook fans has recently increased to as many as millions. from a corporate perspective, Facebook is attracting attention because it makes it easier for you to meet the customers you want. Facebook provides an efficient advertising platform based on the numerous data it has. Advertising targeting can be conducted using their demographic characteristics, behavior, or contact information. It is optimized for advertisements that can expose information to a desired target, so that results can be obtained more effectively. it rethink and communicate corporate brand image to customers through contents. The study was conducted through Facebook advertising data, and could be of great help to business people working in the online advertising industry. For this reason, the independent variables used in the research were selected based on the characteristics of the content that the actual business is concerned with. Recently, the company's Facebook page operation goal is to go beyond securing the number of fan pages, branding to promote its brand, and further aiming to communicate with major customers. the main figures for this assessment are Facebook's 'OK', 'Attachment', 'Share', and 'Number of Click' which are the dependent variables of this study. in order to measure the outcome of the target, the consumer's response is set as a key measurable key performance indicator (KPI), and a strategy is set and executed to achieve this. Here, KPI uses Facebook's ad numbers 'reach', 'exposure', 'like', 'share', 'comment', 'clicks', and 'CPC' depending on the situation. in order to achieve the corresponding figures, the consideration of content production must be prior, and in this study, the independent variables were organized by dividing into three considerations for content production into three. The effects of content material, content structure, and message styles on Facebook's user behavior were analyzed using regression analysis. Content materials are related to the content's difficulty, company relevance, and daily involvement. According to existing research, it was very important how the content would attract users' interest. Content could be divided into informative content and interesting content. Informational content is content related to the brand, and information exchange with users is important. Interesting content is defined as posts that are not related to brands related to interesting movies or anecdotes. Based on this, this study started with the assumption that the difficulty, company relevance, and daily involvement have an effect on the dependent variable. In addition, previous studies have found that content types affect Facebook user activity. I think it depends on the combination of photos and text used in the content. Based on this study, the actual photos were used and the hashtag and independent variables were also examined. Finally, we focused on the advertising message. In the previous studies, the effect of advertising messages on users was different depending on whether they were narrative or non-narrative, and furthermore, the influence on message intimacy was different. In this study, we conducted research on the behavior that Facebook users' behavior would be different depending on the language and formality. For dependent variables, 'OK' and 'Full Click Count' are set by every user's action on the content. In this study, we defined each independent variable in the existing study literature and analyzed the effect on the dependent variable, and found that 'good' factors such as 'self association', 'actual use', and 'hidden' are important. Could. Material difficulties', 'actual participation' and 'large scale * difficulties'. In addition, variables such as 'Self Connect', 'Actual Engagement' and 'Sexual Sexual Attention' have been shown to have a significant impact on 'Full Click'. It is expected that through research results, it is possible to contribute to the operation and production strategy of company Facebook operators and content creators by presenting a content strategy optimized for the purpose of the content. In this study, we defined each independent variable in the existing research literature and analyzed its effect on the dependent variable, and we could see that factors on 'good' were significant such as 'self-association', 'reality use', 'concernal material difficulty', 'real-life involvement' and 'massive*difficulty'. In addition, variables such as 'self-connection', 'real-life involvement' and 'formative*attention' were shown to have significant effects for 'full-click'. Through the research results, it is expected that by presenting an optimized content strategy for content purposes, it can contribute to the operation and production strategy of corporate Facebook operators and content producers.

Analysis of Foodborne Pathogens in Food and Environmental Samples from Foodservice Establishments at Schools in Gyeonggi Province (경기지역 학교 단체급식소 식품 및 환경 중 식중독균 분석)

  • Oh, Tae Young;Baek, Seung-Youb;Koo, Minseon;Lee, Jong-Kyung;Kim, Seung Min;Park, Kyung-Min;Hwang, Daekeun;Kim, Hyun Jung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1895-1904
    • /
    • 2015
  • Foodborne illness associated with food service establishments is an important food safety issue in Korea. In this study, foodborne pathogens (Bacillus cereus, Clostridium perfringens, Escherichia coli, pathogenic Escherichia coli, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, and Vibrio parahaemolyticus) and hygiene indicator organisms [total viable cell counts (TVC), coliforms] were analyzed for food and environmental samples from foodservice establishments at schools in Gyeonggi province. Virulence factors and antimicrobial resistance of detected foodborne pathogens were also characterized. A total of 179 samples, including food (n=66), utensil (n=68), and environmental samples (n=45), were collected from eight food service establishments at schools in Gyeonggi province. Average contamination levels of TVC for foods (including raw materials) and environmental samples were 4.7 and 4.0 log CFU/g, respectively. Average contamination levels of coliforms were 2.7 and 4.0 log CFU/g for foods and environmental swab samples, respectively. B. cereus contamination was detected in food samples with an average of 2.1 log CFU/g. E. coli was detected only in raw materials, and S. aureus was positive in raw materials as well as environmental swab samples. Other foodborne pathogens were not detected in all samples. The entire B. cereus isolates possessed at least one of the diarrheal toxin genes (hblACD, nheABC, entFM, and cytK enterotoxin gene). However, ces gene encoding emetic toxin was not detected in B. cereus isolates. S. aureus isolates (n=16) contained at least one or more of the tested enterotoxin genes, except for tst gene. For E. coli and S. aureus, 92.7% and 37.5% of the isolates were susceptible against 16 and 19 antimicrobials, respectively. The analyzed microbial hazards could provide useful information for quantitative microbial risk assessment and food safety management system to control foodborne illness outbreaks in food service establishments.

Electronic Word-of-Mouth in B2C Virtual Communities: An Empirical Study from CTrip.com (B2C허의사구중적전자구비(B2C虚拟社区中的电子口碑): 관우휴정려유망적실증연구(关于携程旅游网的实证研究))

  • Li, Guoxin;Elliot, Statia;Choi, Chris
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.3
    • /
    • pp.262-268
    • /
    • 2010
  • Virtual communities (VCs) have developed rapidly, with more and more people participating in them to exchange information and opinions. A virtual community is a group of people who may or may not meet one another face to face, and who exchange words and ideas through the mediation of computer bulletin boards and networks. A business-to-consumer virtual community (B2CVC) is a commercial group that creates a trustworthy environment intended to motivate consumers to be more willing to buy from an online store. B2CVCs create a social atmosphere through information contribution such as recommendations, reviews, and ratings of buyers and sellers. Although the importance of B2CVCs has been recognized, few studies have been conducted to examine members' word-of-mouth behavior within these communities. This study proposes a model of involvement, statistics, trust, "stickiness," and word-of-mouth in a B2CVC and explores the relationships among these elements based on empirical data. The objectives are threefold: (i) to empirically test a B2CVC model that integrates measures of beliefs, attitudes, and behaviors; (ii) to better understand the nature of these relationships, specifically through word-of-mouth as a measure of revenue generation; and (iii) to better understand the role of stickiness of B2CVC in CRM marketing. The model incorporates three key elements concerning community members: (i) their beliefs, measured in terms of their involvement assessment; (ii) their attitudes, measured in terms of their satisfaction and trust; and, (iii) their behavior, measured in terms of site stickiness and their word-of-mouth. Involvement is considered the motivation for consumers to participate in a virtual community. For B2CVC members, information searching and posting have been proposed as the main purpose for their involvement. Satisfaction has been reviewed as an important indicator of a member's overall community evaluation, and conceptualized by different levels of member interactions with their VC. The formation and expansion of a VC depends on the willingness of members to share information and services. Researchers have found that trust is a core component facilitating the anonymous interaction in VCs and e-commerce, and therefore trust-building in VCs has been a common research topic. It is clear that the success of a B2CVC depends on the stickiness of its members to enhance purchasing potential. Opinions communicated and information exchanged between members may represent a type of written word-of-mouth. Therefore, word-of-mouth is one of the primary factors driving the diffusion of B2CVCs across the Internet. Figure 1 presents the research model and hypotheses. The model was tested through the implementation of an online survey of CTrip Travel VC members. A total of 243 collected questionnaires was reduced to 204 usable questionnaires through an empirical process of data cleaning. The study's hypotheses examined the extent to which involvement, satisfaction, and trust influence B2CVC stickiness and members' word-of-mouth. Structural Equation Modeling tested the hypotheses in the analysis, and the structural model fit indices were within accepted thresholds: ${\chi}^2^$/df was 2.76, NFI was .904, IFI was .931, CFI was .930, and RMSEA was .017. Results indicated that involvement has a significant influence on satisfaction (p<0.001, ${\beta}$=0.809). The proportion of variance in satisfaction explained by members' involvement was over half (adjusted $R^2$=0.654), reflecting a strong association. The effect of involvement on trust was also statistically significant (p<0.001, ${\beta}$=0.751), with 57 percent of the variance in trust explained by involvement (adjusted $R^2$=0.563). When the construct "stickiness" was treated as a dependent variable, the proportion of variance explained by the variables of trust and satisfaction was relatively low (adjusted $R^2$=0.331). Satisfaction did have a significant influence on stickiness, with ${\beta}$=0.514. However, unexpectedly, the influence of trust was not even significant (p=0.231, t=1.197), rejecting that proposed hypothesis. The importance of stickiness in the model was more significant because of its effect on e-WOM with ${\beta}$=0.920 (p<0.001). Here, the measures of Stickiness explain over eighty of the variance in e-WOM (Adjusted $R^2$=0.846). Overall, the results of the study supported the hypothesized relationships between members' involvement in a B2CVC and their satisfaction with and trust of it. However, trust, as a traditional measure in behavioral models, has no significant influence on stickiness in the B2CVC environment. This study contributes to the growing body of literature on B2CVCs, specifically addressing gaps in the academic research by integrating measures of beliefs, attitudes, and behaviors in one model. The results provide additional insights to behavioral factors in a B2CVC environment, helping to sort out relationships between traditional measures and relatively new measures. For practitioners, the identification of factors, such as member involvement, that strongly influence B2CVC member satisfaction can help focus technological resources in key areas. Global e-marketers can develop marketing strategies directly targeting B2CVC members. In the global tourism business, they can target Chinese members of a B2CVC by providing special discounts for active community members or developing early adopter programs to encourage stickiness in the community. Future studies are called for, and more sophisticated modeling, to expand the measurement of B2CVC member behavior and to conduct experiments across industries, communities, and cultures.