• Title/Summary/Keyword: Independent power system

Search Result 558, Processing Time 0.029 seconds

Independent Load Sharing of UPS systems connected in Parallel (병렬운전 UPS 시스템의 독립 부하 분담 특성)

  • Byun, Y.B.;Koo, T.G.;Joe, K.Y.;Kim, D.H.;Kim, C.U.;ANANIEV, Igor P.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2546-2548
    • /
    • 1999
  • This paper describes characteristics of independent load sharing of parallel UPS systems and proposes a method of control which does not require control interconnections at each UPS system and compensates for line impedance. Simulation results of a two-module UPS system with different power latins and line impedance have demonstrated the feasibility of the proposed control scheme in load sharing.

  • PDF

Modeling and Simulation of an EPPR Valve Coupled with a Spool Valve

  • Khan, Haroon Ahmad;Yun, So-Nam
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.30-35
    • /
    • 2019
  • EPPR (Electro-hydraulic Proportional Pressure Reducing) valves are pressure control valves. In this study, an independent metering valve (IMV), which is a combination of a spool valve opened and closed with the help of an EPPR valve, was discussed. The overall performance of the valve (IMV) was obtained by the respective modeling and simulation of the system. The valve investigated in this study is to be used for independent metering of hydraulic excavator actuator e.g. boom, arm, bucket etc. To design the model, continuity equations and force balance equations were used. The set of differential equations were then simulated in Simulink using ODE45 option in the configuration toolbox. The valve has to be able to control the flow rate going in and out of the cylinder separately, which is why the particular configuration was needed and selected.

Tributary Activity in Diplomacy Relations between Vietnam and Mainland Southeast Asian Countries from 938 to 1885

  • Hanh, Nguyen Thi My
    • SUVANNABHUMI
    • /
    • v.13 no.2
    • /
    • pp.69-108
    • /
    • 2021
  • Based on research of documents left by Vietnamese feudal dynasties, the current article reports how it initially reconstructed the process of Vietnamese tribute activity of Southeast Asia from the 10th to 19th century and demonstrates the significance of these activities to how Vietnam is considered central rather than peripheral as a nation. Tribute activity took place during a period when Vietnam was an independent country; feudal dynasties of Vietnam were independent and autonomous dynasties. Vietnam had just escaped from the 1,000-year invasion of China and more recently gotten out from the control of the French colonialists. From the demonstration of the tribute activity, otherwise called requesting investiture, the current article places it in relation to the contemporary Chinese "tributary system" to draw out the characteristics and its essence. At the time the current article explores the underlying causes that contributed to shaping the core characteristics of this "tributary system" and its significance to power relationships.

Frequency Stability Enhancement of Power System using BESS (BESS를 활용한 전력계통 주파수 안정도 향상)

  • Yoo, Seong-Soo;Kwak, Eun-Sup;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.595-606
    • /
    • 2022
  • Korea has the characteristics of traditional power system such as large-scale power generation and large-scale power transmission systems, including 20 GW large-scale power generation complexes in several regions with unit generator capacity exceeding 1.4 GW, 2-3 ultra-high-voltage transmission lines that transport power from large-scale power generation complexes, and 6 ultra-high-voltage transmission lines that transport power from non-metropolitan areas to the metropolitan area. Due to the characteristics of the power system, the penetration level for renewable energy is low, but due to frequency stability issue, some generators are reducing the output of generators. In the future, the issue of maintaining the stability of the power system is expected to emerge as the most important issue in accordance with the policy of expanding renewable energy. When non-inertial inverter-based renewable energy, such as solar and wind power, surges rapidly, the means to improve the power system stability in an independent system is to install a natural inertial resource synchronous condenser (SC) and a virtual inertial resource BESS in the system. In this study, we analyzed the effect of renewable energy on power system stability and the BESS effect to maintain the minimum frequency through a power system simulation. It was confirmed that the BESS effect according to the power generation constraint capacity reached a maximum of 122.81 %.

Development and performance evaluation of traction system for steep gradient and sharp curve track (급구배 및 급곡선 궤도 추진시스템 개발 및 성능 평가)

  • Seo, Sungil;Mun, Hyung-Suk;Moon, Ji-Ho;Suk, Myung-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.493-501
    • /
    • 2016
  • In this study, core technologies of a traction system on a mountain tram operating on the track of mountain road full of sharp curves and steep gradients were developed. In domestic mountain resort areas, sometimes the transportation service is not provided in winter because of ice and heavy snow on roads, so a mountain railway service independent of the climate and geographic conditions is needed. A traction system was designed taking into account of the power of a traction motor to climb the gradient of 120 ‰, which is common in domestic mountainous areas. and power transmission system was designed to consider the installation space for the traction system. In addition, a reduction gear and a propeller shaft were developed. An elastic pinion was developed and applied to the rack & pinion bogie system for steep gradient so that noise and vibration generated by contact between the steel gears could be reduced. Impact comparison tests showed that the vibration level of the elastic pinion is one-third lower than that of previous steel pinion. Independent rotating wheels and axles were developed for the bogie system to operate on the sharp curve of a 10 meter radius. In addition, the band braking system was developed to enhance the braking force during running on the steep gradient. A test for the braking force showed it exerts the required braking force. The performance of the developed core components were verified by the tests and finally they were applied to the bogie system running on the track of steep gradient and sharp curve.

Congestion Management in Deregulated Power System by Optimal Choice and Allocation of FACTS Controllers Using Multi-Objective Genetic Algorithm

  • Reddy, S. Surender;Kumari, M. Sailaja;Sydulu, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.467-475
    • /
    • 2009
  • Congestion management is one of the technical challenges in power system deregulation. This paper presents single objective and multi-objective optimization approaches for optimal choice, location and size of Static Var Compensators (SVC) and Thyristor Controlled Series Capacitors (TCSC) in deregulated power system to improve branch loading (minimize congestion), improve voltage stability and reduce line losses. Though FACTS controllers offer many advantages, their installation cost is very high. Hence Independent System Operator (ISO) has to locate them optimally to satisfy a desired objective. This paper presents optimal location of FACTS controllers considering branch loading (BL), voltage stability (VS) and loss minimization (LM) as objectives at once using GA. It is observed that the locations that are most favorable with respect to one objective are not suitable locations with respect to other two objectives. Later these competing objectives are optimized simultaneously considering two and three objectives at a time using multi-objective Strength Pareto Evolutionary Algorithms (SPEA). The developed algorithms are tested on IEEE 30 bus system. Various cases like i) uniform line loading ii) line outage iii) bilateral and multilateral transactions between source and sink nodes have been considered to create congestion in the system. The developed algorithms show effective locations for all the cases considered for both single and multiobjective optimization studies.

A Study on the Prediction of Power Consumption in the Air-Conditioning System by Using the Gaussian Process (정규 확률과정을 사용한 공조 시스템의 전력 소모량 예측에 관한 연구)

  • Lee, Chang-Yong;Song, Gensoo;Kim, Jinho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.64-72
    • /
    • 2016
  • In this paper, we utilize a Gaussian process to predict the power consumption in the air-conditioning system. As the power consumption in the air-conditioning system takes a form of a time-series and the prediction of the power consumption becomes very important from the perspective of the efficient energy management, it is worth to investigate the time-series model for the prediction of the power consumption. To this end, we apply the Gaussian process to predict the power consumption, in which the Gaussian process provides a prior probability to every possible function and higher probabilities are given to functions that are more likely consistent with the empirical data. We also discuss how to estimate the hyper-parameters, which are parameters in the covariance function of the Gaussian process model. We estimated the hyper-parameters with two different methods (marginal likelihood and leave-one-out cross validation) and obtained a model that pertinently describes the data and the results are more or less independent of the estimation method of hyper-parameters. We validated the prediction results by the error analysis of the mean relative error and the mean absolute error. The mean relative error analysis showed that about 3.4% of the predicted value came from the error, and the mean absolute error analysis confirmed that the error in within the standard deviation of the predicted value. We also adopt the non-parametric Wilcoxon's sign-rank test to assess the fitness of the proposed model and found that the null hypothesis of uniformity was accepted under the significance level of 5%. These results can be applied to a more elaborate control of the power consumption in the air-conditioning system.

ILL-VERSUS WELL-POSED SINGULAR LINEAR SYSTEMS: SCOPE OF RANDOMIZED ALGORITHMS

  • Sen, S.K.;Agarwal, Ravi P.;Shaykhian, Gholam Ali
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.621-638
    • /
    • 2009
  • The linear system Ax = b will have (i) no solution, (ii) only one non-trivial (trivial) solution, or (iii) infinity of solutions. Our focus will be on cases (ii) and (iii). The mathematical models of many real-world problems give rise to (a) ill-conditioned linear systems, (b) singular linear systems (A is singular with all its linearly independent rows are sufficiently linearly independent), or (c) ill-conditioned singular linear systems (A is singular with some or all of its strictly linearly independent rows are near-linearly dependent). This article highlights the scope and need of a randomized algorithm for ill-conditioned/singular systems when a reasonably narrow domain of a solution vector is specified. Further, it stresses that with the increasing computing power, the importance of randomized algorithms is also increasing. It also points out that, for many optimization linear/nonlinear problems, randomized algorithms are increasingly dominating the deterministic approaches and, for some problems such as the traveling salesman problem, randomized algorithms are the only alternatives.

  • PDF

The Improvement of China's Nuclear Safety Supervision Technical Support Ability

  • Han Wu;Guoxin Yu;Xiangyang Zheng;Keyan Teng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.523-531
    • /
    • 2022
  • The International Atomic Energy Agency (IAEA) entails independent decision-making for the safety supervision of civil nuclear facilities. To evaluate and review the safety of nuclear facilities, the national regulatory body usually consults independent institutions or external committees. Technical Support Organizations (TSOs) include national laboratories, research institutions, and consulting organizations. Support from professional organizations in other countries may also be required occasionally. Most of the world's major nuclear power countries adopt an independent nuclear safety supervision model. Accordingly, China has continuously improved upon the construction of such a system by establishing the National Nuclear Safety Administration (NNSA) as the decision-making department for nuclear and radiation safety supervision, six regional safety supervision stations, the Nuclear and Radiation Safety Center (NSC), a nuclear safety expert committee, and the National Nuclear and Radiation Safety Supervision Technology R&D Base, which serves as the test, verification, and R&D platform for providing consultation and technical support. An R&D system, however, remains to be formed. Future endeavors must focus on improving the technical support capacity of these systems. As an enhancement from institutional independence to capability independence is necessary for ensuring the independence of China's nuclear safety regulatory institution, its regulatory capacity must be improved in the future.

Design feasibility study by analytical approach for a disaster response hydraulic driving system (재난 대응용 유압 주행 시스템의 해석적 접근을 통한 설계 타당성 검토)

  • Lee, Geun Ho;Noh, Dae Kyung;Lee, Dae hee;Park, Sung su;Jang, Ju Sup
    • Journal of Drive and Control
    • /
    • v.15 no.2
    • /
    • pp.22-31
    • /
    • 2018
  • This study deals with verifying the design feasibility, of an independently driving hydraulic system for disaster response purposes, through an analytical approach. The development target is a system in which four traveling motors are driven independently, and must be easy to operate even under conditions in which different loads are applied to the traveling motors. In order to be suitable for complex work, the hydraulic system was designed using the main control valve with a pressure compensation function. If we can develop an analytical model that reflects the specifications and functions of the parts through the analysis program, we can verify the validity of the design before we make the prototype. The purpose of this study therefore, is to verify the feasibility of designing an independent drive hydraulic system through the development of an analysis model from the viewpoint of complex work. The analysis program uses Simulation X.