• Title/Summary/Keyword: Increasing Energy Management

Search Result 415, Processing Time 0.02 seconds

Dynamic Impact of Macroeconomic Variables on the Ecological Footprint in Malaysia: Testing EKC and PHH

  • MEHRAAEIN, Mahmood;AFROZ, Rafia;RAHMAN, Mehe Zebunnesa;MUHIBBULLAH, Md
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.5
    • /
    • pp.583-593
    • /
    • 2021
  • The objective of this paper is to investigate the impact of economic growth (per capita real GDP), the square of per capita real GDP, energy use, financial development (FD), and foreign direct investment (FDI) on ecological footprint (EF) in the case of Malaysia over the period 1971-2014, by employing the ARDL approach. The long-run results revealed that economic growth has a significant positive impact on the ecological footprint and it implies that the economic growth deteriorates the environmental quality in Malaysia. Conversely, the square of GDP showed a negative and significant impact on the EF in the long run. As the coefficient of GDP in our study is positive and statistically significant while the coefficient of squared GDP is negatively significant, thus, this study supports the presence of the environmental Kuznets curve (EKC) hypothesis in the case of Malaysia. Furthermore, the result indicates that FDI has a positive and significant impact on the EF in the long run, which means a rise in FDI will enhance the environmental pollution level. Thus, it confirms the pollution haven hypothesis. Hence, it suggests that Malaysia imposes stricter environmental policies. Further, FDI and FD are causing GDP in Malaysia, but through increasing EF.

Fire and Explosion Hazards and Safety Management Measures of Waste Plastic-to-Pyrolysis Oil Conversion Process (폐플라스틱 열분해 유화 공정의 화재·폭발 위험성 및 안전관리 방안)

  • Dong-Hyun Seo;Yi-Rac Choi;Jin-Ho Lim;Ou-Sup Han
    • New & Renewable Energy
    • /
    • v.19 no.3
    • /
    • pp.22-33
    • /
    • 2023
  • The number of fire and explosion accidents caused by pyrolysis oil and gas at waste plastic pyrolysis plants is increasing, but accident status and safety conditions have not been clearly identified. Therefore, the aim of the study was to identify the risks of the waste plastic pyrolysis process and suggest appropriate safety management measures. We collected information on 19 cases of fire and explosion accidents that occurred between 2010 and 2021 at 26 waste plastic pyrolysis plants using the Korea Occupational Safety and Health Agency (KOSHA) database and media reports. The mechanical, managerial, personnel-related, and environmental problems within a plant and problems related to government agencies and the design, manufacturing, and installation companies involved with pyrolysis equipment were analyzed using the 4Ms of Machines, Management, Man, and Media, as well as the System-Theoretic Accident Model and Processes (STAMP) methodology for seven accident cases with accident investigation reports. Study findings indicate the need for establishing legal and institutional support measures for waste plastic pyrolysis plants in order to prevent fire and explosion accidents in the pyrolysis process. In addition, ensuring safety from the design and manufacturing stages of facilities is essential, as are measures that ensure systematic operations after the installation of safety devices.

The Plan to Increase Efficiency of Exhaust Gas Recirculation System (배기가스 재순환장치 효율 증대 방안)

  • Kim, Kwang Soo;Chung, Soon Suk;Heo, Yun Bok
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.185-194
    • /
    • 2014
  • Internal engine is the main power source of vehicle and is the main source of air pollution. To satisfy this getting rigorous emission regulation, it must be solved simultaneously the dilemma of reducing emission gas and increasing heat efficiency. Diesel engine is preferred compare with gasoline engine in aspect of energy consumption but it must be solved reducing the containing of NOx, CO and HC. In this study: 1. Looking for alternative of performance improvement of Exhaust Gas Recirculation(EGR) which is emission gas reduction system. 2. Reducing malfunction of controlling emission gas. 3. Made possible precision control.

Data placement and power management for energy saving in multimedia servers (멀티미디어 서버에서 에너지 절약을 위한 데이터 배치 및 전원 관리)

  • Lee, Kyung-Jin;Kim, Eunsam
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • Recently, with the rapid increasing demands for data services on the Internet, the need for large-scale data centers has been increased. However, these data centers consume enormous amounts of energy to run numerous servers and equipment. In this paper, we therefore propose a novel scheme to save energy in multimedia servers by concentrating the load on specific servers according to the current load level of the overall system and turning them off immediately. To this end, the number of server groups in which each video is stored is determined according to its popularity so that video playback requests can be evenly distributed to the entire system. Finally, through extensive simulations, we show that our proposed data placement and power management scheme in multimedia servers significantly reduces energy consumption by decreasing the number of servers whose powers are on when compared with the existing method, while maintaining the service quality.

Numerical Study on using Immersion Cooling for Thermal Management of ESS (Energy Storage System) (ESS(Energy Storage System) 열관리를 위한 액침 냉각 활용에 대한 수치해석 연구)

  • Jeonggyun Ham;Nayoung You;Myeongjae Shin;Honghyun Cho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • The introduction of the sector coupling concept has expanded the scope of ESS utilization, resulting in the importance of thermal management of ESS. To ensure the safe use of the lithium-ion batteries that are used in ESS, it is important to use the batteries at the optimal temperature. To examine the utilization of liquid cooling in ESS, numerical study was conducted on the thermal characteristics of 21700 battery modules (16S2P array) during liquid cooling using Novec-649 as insulating fluid. The NTGK model, an MSMD model in ANSYS fluent, was used to investigate thermal characteristics on the battery modules with liquid immersion cooling. The results show that the final temperature of the battery module discharged at 5 C-rate is 68.9℃ using natural convection and 48.3℃ using liquid cooling. However, the temperature difference among cells in the battery module was up to 0.5℃ when using natural convection cooling and 5.8℃ when using liquid cooling, respectively, indicating that the temperature difference among cells was significantly increased when liquid cooling was used. As the mass flow rate increased from 0.01 kg/s to 0.05 kg/s, the average temperature of the battery module decreased from 48.3℃ to 38.4℃, confirming that increasing the mass flow rate of the insulating fluid improves the performance of liquid immersion cooling. Although partial liquid immersion cooling has a high cooling performance compared to natural convection cooling, the temperature difference between modules was up to 8.9℃, indicating that the thermal stress of the battery cells increased.

On Effective Slack Reclamation in Task Scheduling for Energy Reduction

  • Lee, Young-Choon;Zomaya, Albert Y.
    • Journal of Information Processing Systems
    • /
    • v.5 no.4
    • /
    • pp.175-186
    • /
    • 2009
  • Power consumed by modern computer systems, particularly servers in data centers has almost reached an unacceptable level. However, their energy consumption is often not justifiable when their utilization is considered; that is, they tend to consume more energy than needed for their computing related jobs. Task scheduling in distributed computing systems (DCSs) can play a crucial role in increasing utilization; this will lead to the reduction in energy consumption. In this paper, we address the problem of scheduling precedence-constrained parallel applications in DCSs, and present two energy- conscious scheduling algorithms. Our scheduling algorithms adopt dynamic voltage and frequency scaling (DVFS) to minimize energy consumption. DVFS, as an efficient power management technology, has been increasingly integrated into many recent commodity processors. DVFS enables these processors to operate with different voltage supply levels at the expense of sacrificing clock frequencies. In the context of scheduling, this multiple voltage facility implies that there is a trade-off between the quality of schedules and energy consumption. Our algorithms effectively balance these two performance goals using a novel objective function and its variant, which take into account both goals; this claim is verified by the results obtained from our extensive comparative evaluation study.

Evaluation of Edge-Based Data Collection System through Time Series Data Optimization Techniques and Universal Benchmark Development (수집 데이터 기반 경량 이상 데이터 감지 알림 시스템 개발)

  • Woojin Cho;Jae-hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.453-458
    • /
    • 2024
  • Due to global issues such as climate crisis and rising energy costs, there is an increasing focus on energy conservation and management. In the case of South Korea, approximately 53.5% of the total energy consumption comes from industrial complexes. In order to address this, we aimed to improve issues through the 'Shared Network Utility Plant' among companies using similar energy utilities to find energy-saving points. For effective energy conservation, various techniques are utilized, and stable data supply is crucial for the reliable operation of factories. Many anomaly detection and alert systems for checking the stability of data supply were dependent on Energy Management Systems (EMS), which had limitations. The construction of an EMS involves large-scale systems, making it difficult to implement in small factories with spatial and energy constraints. In this paper, we aim to overcome these challenges by constructing a data collection system and anomaly detection alert system on embedded devices that consume minimal space and power. We explore the possibilities of utilizing anomaly detection alert systems in typical institutions for data collection and study the construction process.

A Study on the Ion-exchange Characteristics of Zeolites(A, 13X, Y, Mordenite, Chabazite) (제올라이트(A, 13X, Y, Mordenite, Chabazite)의 이온교환특성 연구)

  • An, Jin-Soo;Seo, Chung-Seok;Lee, Yong-Rae;Chun, Kwan-Sik;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.949-956
    • /
    • 1994
  • The objective of this study is to experimentally investigate the ion exchange characteristics of five types of Zeolite(Zeolite-A, 13X, Y, Mordenite, Chabazite) for effective removal of Cs, Sr and Co ions in water solution at low concentration(0.01 N and 0.005 N). Total ion exchange capacity and equilibrium isotherm are measured, and free-energy change(${\Delta}G^0$) and enthalpy change(${\Delta}H^0$) in ion exchange reaction are calculated from experimental results. In addition the ion exchange equilibrium in the three-component system for three types of zeolite showing better efficiency is measured and plotted in triangle coordinates. It is shown from experimental results that the magnitude of free-energy change increases with the increasing ion selectivity, and the difference of free energy change between ions correlates closely with that of ion selectivity. The results also shows that Chabazite is effective for the adsorption of Cs ion, and Zeolite-A and Zeolite-13X for that of Sr and Co ions.

  • PDF

Cost savings for paper machines with automation solution packages (초지기 자동화 해법에 의한 운전비용 절감대책)

  • Sorsa, Jukka
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.05a
    • /
    • pp.83-125
    • /
    • 2007
  • Increasing energy costs have caused profitability problems for paper suppliers. Therefore unprofitable lines are being closed down. The actions aiming for improved profits are focused either on cost savings or on increasing the capacity of the remaining machines. The runnability of a paper machine and its total efficiency have a significant effect on energy consumption. Producing one ton of waste paper consumes at least as much energy as producing the same amount of sellable end product. New automation solutions enable significant cost-effective improvements to the total efficiency of a line without large investment projects. The measures focus on minimizing changes, interruptions, interruption recovery times and grade change times. Newest actuators, online quality measurements and wet end analysators create an improvement potential, which can be optimally implemented with the latest machine direction control solutions, based on model predictive control concepts. Equally, drying management is significant to the energy consumption. The newest control strategies optimize the use of various drying actuators for different situations; either by responding to changes as efficiently as possible or by using only the cheapest energy sources in stable situations. An even steam supply, which is vital for paper machines, is achieved with control for the power plant steam network. This makes possible to avoid the delays upon starting the paper machine and assure an even steam supply for the drying section and the actuators. This document describes means which have brought significant energy and raw material savings for paper machines. Metso Automation has provided efficiency improvement packages, which are usually based on optimized control of dry weight and drying in all running conditions. The solutions are based on performance analysis, on which the estimations for improvement potential and the necessary actions are based on. Typically benefits on an annual level have been from hundreds of thousands of euros to over one million euro. For example, variations in dry weight have been decreased more than 50%. The results are presented with a few examples. Additionally, the analysis models, adjustment solutions and the changes in running methods with which the results were achieved, are presented.

  • PDF

An Efficient Node Life-Time Management of Adaptive Time Interval Clustering Control in Ad-hoc Networks (애드혹 네트워크에서 적응적 시간관리 기법을 이용한 클러스터링 노드 에너지 수명의 효율적인 관리 방법)

  • Oh, Young-Jun;Lee, Knag-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.495-502
    • /
    • 2013
  • In the mobile Ad hoc Network(MANET), improving technique for management and control of topology is recognized as an important part of the next generation network. In this paper, we proposed an efficient node life time management of ATICC(Adaptive Time Interval Clustering Control) in Ad-hoc Networks. Ad-hoc Network is a self-configuration network or wireless multi-hop network based on inference topology. This is a method of path routing management node for increasing the network life time through the periodical route alternation. The proposed ATICC algorithm is time interval control technique depended on the use of the battery energy while node management considering the attribute of node and network routing. This can reduce the network traffic of nodes consume energy cost effectively. As a result, it could be improving the network life time by using timing control method in ad-hoc networks.