• Title/Summary/Keyword: Increasing Energy Management

Search Result 415, Processing Time 0.027 seconds

Application of Big Data and Machine-learning (ML) Technology to Mitigate Contractor's Design Risks for Engineering, Procurement, and Construction (EPC) Projects

  • Choi, Seong-Jun;Choi, So-Won;Park, Min-Ji;Lee, Eul-Bum
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.823-830
    • /
    • 2022
  • The risk of project execution increases due to the enlargement and complexity of Engineering, Procurement, and Construction (EPC) plant projects. In the fourth industrial revolution era, there is an increasing need to utilize a large amount of data generated during project execution. The design is a key element for the success of the EPC plant project. Although the design cost is about 5% of the total EPC project cost, it is a critical process that affects the entire subsequent process, such as construction, installation, and operation & maintenance (O&M). This study aims to develop a system using machine-learning (ML) techniques to predict risks and support decision-making based on big data generated in an EPC project's design and construction stages. As a result, three main modules were developed: (M1) the design cost estimation module, (M2) the design error check module, and (M3) the change order forecasting module. M1 estimated design cost based on project data such as contract amount, construction period, total design cost, and man-hour (M/H). M2 and M3 are applications for predicting the severity of schedule delay and cost over-run due to design errors and change orders through unstructured text data extracted from engineering documents. A validation test was performed through a case study to verify the model applied to each module. It is expected to improve the risk response capability of EPC contractors in the design and construction stage through this study.

  • PDF

Exploration of emerging technologies based on patent analysis in complex product systems for catch-up: the case of gas turbine (복합제품시스템 추격을 위한 특허 기반 부상기술 탐색: 가스터빈 사례를 중심으로)

  • Kwak, Kiho;Park, Joohyoung
    • Knowledge Management Research
    • /
    • v.17 no.2
    • /
    • pp.27-50
    • /
    • 2016
  • Korean manufacturing industry have recently faced the catch-up of China in the mass commodity product, such as automotive, display, and smart phone in terms of market as well as technology. Accordingly, discussion on the importance of achieving catch-up in complex product systems (CoPS) has been increasing as a new innovation engine for the industry. In order to achieve successful catch-up of CoPS, we explored emerging technologies of CoPS, which are featured by the characteristics of radical novelty, relatively fast growth and self-sustaining, through the study of emerging technologies of gas turbine for power generation. We found that emerging technologies of the gas turbine are technologies for combustion nozzle and composition of electrical machine for increasing power efficiency, washing technology for particulate matter, cast and material processing technology for enhancing durability from fatigue, cooling technologies from extremely high temperature, interconnection operation technology between renewable energy and the gas turbine for flexibility in power generation, and big data technology for remote monitoring and diagnosis of the gas turbine. We also found that those emerging technologies resulted in technological progress of the gas turbine by converging with other conventional technologies in the gas turbine. It indicates that emerging technologies in CoPS can be appeared on various technological knowledge fields and have complementary relationship with conventional technologies for technology progress of CoPS. It also implies that latecomers need to pursue integrated learning that includes emerging technologies as well as conventional technologies rather than independent learning related to emerging technologies for successful catch-up of CoPS. Our findings provide an important initial theoretical ground for investigating the emerging technologies and their characteristics in CoPS as well as recognizing knowledge management strategy for successful catch-up of latecomers. Our findings also contribute to the policy development of the CoPS from the perspective of innovation strategy and knowledge management.

A Study on the Reduction of Diesel-Engine Emissions (디젤엔진 배기가스의 저감에 관한 연구)

  • Hur, Youn-Bok;Chung, Soon-Suk;Kim, Kwang-Soo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.11a
    • /
    • pp.245-252
    • /
    • 2012
  • Internal engine is the main power source of vehicle and is the main source of air pollution. To satisfy this getting rigorous emission regulation, it must be solved simultaneously the dilemma of reducing emission gas and increasing heat efficiency. Diesel engine is preferred compare with gasoline engine in aspect of energy consumption but it must be solved reducing the containing of NOx, CO and HC. In this study 1. Looking for alternative of performance improvement of Exhaust Gas Recirculation(EGR) which is emission gas reduction system, 2. Reducing malfunction of controlling emission gas 3. Made possible precision control.

  • PDF

Corrosion behavior of separator for molten Cab -onate Fuel Cell (MCFC 분리판 부식거동에 관한 연구)

  • 이성일;김귀열
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.4
    • /
    • pp.177-186
    • /
    • 2000
  • The molten carbonate fuel cell has conspicuous features and high potential in being used as an energy converter of various fuels to electricity and heat. However, the MCFC which use strongly corrosive molten carbonate at $650^{\circ}C$ have many problem. Systematic investigation on corrosion behavior of Fe/20Cr/Ti has been done in (62+38)mol % (Li+K) $CO_3$ melt at 923K by using. steady state polarization and electrochemical impedance spectroscopy method. It found that the corrosion current of these Febased alloys decreased with increasing Ti content, and this attribute to the formation of $LiCrO_2$ layer at the surface.

  • PDF

A Statistical Analysis on the Electric Shocks in 2014 (2014년 감전사고 통계 분석)

  • Hong, Eun-Hee
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.171-179
    • /
    • 2015
  • As the industrial scale is getting enlarged and the people's quality of life is growing, the electric energy consumption has been rapidly increasing every year and the frequency of electrical accidents such as electrical shock This paper gives statistical analysis of the number of casualties caused by the electrical shock, five hundred people every year, but it still exceeded the shaping risk of electrical accidents to anyone in KOREA. In this paper, for the electrical shock of the in 2014 act by occupation, voltage electrical equipment, location, accident type and months. In order to acquire electrical shock in 2014, we visited police stations and hospitals and analyzed records of accidents. The result showed that the electrical shock alone caused 37 people deaths and 569 injuries.

Intelligent Decision System for Purging a Residual Gas inside Tubing in Semiconductor Process (반도체공정의 Tubing 내 잔여가스제거 지적결정시스템)

  • Lee, Sa-Hwan;Huh, Yong-Jeong;Choi, Seong-Joo;Lee, Jong-Rark
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.4 s.17
    • /
    • pp.23-27
    • /
    • 2006
  • Semiconductor industry has been dramatically developed with the information era of 21C, and the trend now is to consider that the technology of management system of the computer utility that has a high efficiency is important. This study investigated the intelligent decision system for residual gas purge process to effectively remove the residual gas in the tube after replacing the cylinder that is used for the gas cabinet or BSGS(Bulk Specialty Gas Supply System) of the semiconductor process. It was suggest from this study that it is possible to decide the type, frequency and volume of purge gas using various toxic gases which is necessary for each process. Also, this result will be utilized for operating the system, increasing the efficiency of management and saving energy.

  • PDF

Energy-Saving and Environmental Evaluation of Water Supply System on Replacing Water Storage Installed Booster Pump System by Direct Connecting Booster Pump System (저수조 설치 펌프직송방식의 수도직결 증압방식 전환에 관한 에너지절약성 및 환경성 검토)

  • Lee, Chulgoo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2015
  • Currently water supply system with water storage is generally applied except for small building such as single-family houses, and water supply system on replacing water storage installed system by direct connecting system has been increasing because of sanitary and energy-saving aspects. The purpose of this study is to evaluate energy-saving and environmental efficiency of direct connecting booster pump system in comparison with the water storage installed system. The architectural condition of the evaluation subject is ten-story apartment house in which sixty households live. To calculate the power consumption of the pump, the volume of water supply was determined from existing data and other data, such as head, efficiency of the pump, was the value used for general application in design office. The power consumption of the water supply pump for one day was 8.5 kWh for direct connecting booster pump system, and 22.5 kWh for water storage installed system, and the former system showed energy savings of 62% compared to the latter system. Reduced power consumption also leads to reduction of $CO_2$ emission. According to the criteria presented in the Korea Energy Management Corporation, reducing the 2,410 kg $CO_2$ emission is possible per year.

Analysis of Causal Relationship between Energy Consumption, Production and Export in Domestic Manufacturing Sector (국내 제조업부문의 에너지소비, 생산, 수출간의 인과관계 분석)

  • Kim, Suyi
    • Environmental and Resource Economics Review
    • /
    • v.26 no.1
    • /
    • pp.37-56
    • /
    • 2017
  • This study analyzed the mutual causal relationship between energy consumption, production, and export for manufacturing industry in Korea. The Korean manufacturing industry was divided into nine industries and panel data was constructed from 1991 to 2013. The panel Granger causality test method developed by Demitrescu and Hurlin (2012) was used along with the Vector Error Correction Model. This analysis showed that there was Granger Causality from production to energy consumption, from exports to energy consumption. However, Granger Causality was not established in the opposite direction. Therefore, this result supports the conservation hypothesis of Qzturk (2010) that energy-saving policies in the manufacturing sector can be implemented without adverse effects on production or exports in short-run. There is a long-run cointegrating relationship between production, energy consumption, exports, labor, and capital in the Korean manufacturing sector. Furthermore, the energy consumption contributes to the increasing of production in long-run equilibrium relationship.

Design and evaluation of an experimental system for monitoring the mechanical response of piezoelectric energy harvesters

  • Kim, Changho;Ko, Youngsu;Kim, Taemin;Yoo, Chan-Sei;Choi, BeomJin;Han, Seung Ho;Jang, YongHo;Kim, Youngho;Kim, Namsu
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.133-137
    • /
    • 2018
  • Increasing interest in prognostics and health management has heightened the need for wireless sensor networks (WSN) with efficient power sources. Piezoelectric energy harvesters using Pb(Zr,Ti)O3 (PZT) are one of the candidate power sources for WSNs as they efficiently convert mechanical vibration energy into electrical energy. These types of devices are resonated at a specific frequency, which has a significant impact on the amount of energy harvested, by external vibration. Hence, precise prediction of mechanical deformation including modal analysis of piezoelectric devices is crucial for estimating the energy generated under specific conditions. In this study, an experimental vibrational system capable of controlling a wide range of frequencies and accelerations was designed to generate mechanical vibration for piezoelectric energy harvesters. In conjunction with MATLAB, the system automatically finds the resonance frequency of harvesters. A small accelerometer and non-contact laser displacement sensor are employed to investigate the mechanical deformation of harvesters. Mechanical deformation under various frequencies and accelerations were investigated and analyzed based on data from two types of sensors. The results verify that the proposed system can be employed to carry out vibration experiments for piezoelectric harvesters and measurement of their mechanical deformation.

A Study on File Sharing Mechanism for Network Energy Efficiency: Designing & Implementation Proxying System (네트워크 에너지 효율향상을 고려한 File Sharing 기술 연구)

  • Yun, Jung-Mee;Lee, Sang-Hak
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.2
    • /
    • pp.135-140
    • /
    • 2011
  • Currently, studies have show that the network related energy consumption are increasing. and part of overall energy consumption of our society are too. So, that is important to look for energy-efficient network applications and protocols. A most of network energy consumption are due to network edge devices. in this paper, in order to cut down the emissions of carbon dioxide from ICT business, which contributes 2% of the global energy consumption, it is necessary to understand energy consumption in peer-to-peer system. In this paper, in this paper we propose a architecture based on the introduction of a p2p proxy. The model is analyzed analytically and numerically to reveal how these factors influence the overall power consumption in both steady state and flash crowd information exchange scenarios. Specifically, our results show that the proxy-based solution can provide up to 50% reduction in the energy consumption and, at the same time, a significant reduction in the average file download time.