• Title/Summary/Keyword: Increasing

Search Result 64,314, Processing Time 0.062 seconds

Quality Characteristics of Madeleine Added with Lentil (Lens culinaris) Powder (렌틸콩 분말을 첨가한 마들렌의 품질 특성)

  • Bae, Dan-Bi;Kim, Kyoung-Hee;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1816-1822
    • /
    • 2016
  • This study investigated the quality characteristics and antioxidant activities of madeleine added with lentil powder (LP). Madeleine was prepared with flour levels of lentil powder (0, 20, 40, and 60%). The pH, moisture, and specific gravity of madeleine decreased with increasing amounts of LP, whereas loss rate increased. Hunter L and b values of crust decreased with increasing amounts of LP, whereas a value of crust increased (P<0.05). Hunter L and b values of crumb increased with increasing amounts of LP, whereas a value of crumb decreased (P<0.05). For texture of madeleine with increasing amounts of LP, hardness and adhesiveness increased, whereas springiness, cohesiveness, and chewiness were reduced. DPPH radical scavenging activity of LP madeleine significantly increased with increasing amounts of LP (P<0.05). In the sensory evaluation of appearance, color, flavor, texture, taste, and overall preference, madeleine with LP 20% showed the highest value. It is suggested that LP 20% madeleine could be substituted for wheat flour to improve madeleine quality.

The Influence of Electrolytes on the Dyeing Properties of Congo Red on Cotton Fibers (Congo Red로 염색한 면섬유의 염색성에 미치는 전해질의 영향)

  • Lee, Young-Hee;Park, Joon-Myung;Sung, Woo-Kyung;Kim, Kyung-Hwan
    • Textile Coloration and Finishing
    • /
    • v.3 no.2
    • /
    • pp.34-42
    • /
    • 1991
  • The effects of electrolyte on dyeing properties of cotton fiber with Congo Red have been studied at 90, 70 and $40^{\circ}C$. Each dyeing carried into an infinite bath with $1\times10^{-4}$ mol/l of Congo Red and with various concentration of electrolytes. The results obtained from this study were as follow; 1. The equilibrium adsorption of dye $(C_\infty)$ values decreased with increasing dyeing temperature, $C_\infty$ values increased in the order KCl>NaCl>LiCl. 2. The values of apparent diffusion coefficients $(D_a)$ increased with increasing dyeing temperature, but $D_a$ values decreased in the order KCl$D_a$ values decreased with increasing electrolyte concentration. 4. Effect of electrolytes decreased with increasing dyeing temperature. 5. The values of standard affinities of dyeing $(-\triangle\mu^{\circ})$, the standard heats of dyeing $(-\triangleH^{\circ})$, and the standard entropies $(-\triangleS^{\circ})$, increased in the order KCl>NaCl>LiCl. 6. Equilibrium adsorption isotherm curve were Freundlich type, and in the Equation y=a.x$^{n}$ , the values of a and n increased in the order KCl>NaCl>LiCl. 7. The value of $-\triangle\mu^{\circ}$, $-\triangleH^{\circ}$, and $-\triangleS^{\circ}$, decreased with increasing electrolyte concentration.

  • PDF

Effects of the Soil Moisture and Hardness on the Drawing Performance of a Two-Wheel Tractor. (토양수분과 경도가 동력경운기의 견인성능에 미치는 영향)

  • 박호석;차균도
    • Journal of Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.25-32
    • /
    • 1977
  • This experiment was conducted in order to find out the drawing performance of a two-wheel tractor under different levels of the soil moisture and hardness, so as to obtain some basic data for improving their drawing performance. With fairly homogeneous soil, 5 levels of soil moisture contents (8, 13, 17, 20 and 23%) and 3 levels of soil hardness (0 , 2 and 4kg/$cm^2$) were selected for this experiment.The summerized results are as follows ;1. The draft force, on the hard soil (hardness ; 4kg/$cm^2$), had a distinct tendency to decrease with the increasing soil moisture. On the medium soil (hardness ; 2 kg/$cm^2$), and the soft soil (hardness ; 0kg$cm^2$), the draft force showed the highest when the moisture contents were within the range of 16-19%.But the maximum draft force, on the soft soil, was higher than that on the medium soil by 10 %. 2. The driving axle torque increased with increasing soil by 10 %. 3.The values of horizontal distance between the soil reaction point and axle shaft were within the range of 0~10cm , and it had the tendency to increase with the increasing soil moisture. Also, it s value was the largest on the hard soil and the smallest on the soft soil. 4.The tractive efficiency decreased with the increasing soil moisture. On the hard soil, the average value of tractive efficiency was higher than that on the medium soil by 19.0% and that on the soft soil was lower than that on the medium soil. 5.The traction ratio were within the range of 30 ~45%, and their changing tendency with respect to the soil moisture was similar to that in the case of the draft force. 6. The travel resistance ratio tended to increased with increasing soil moisture, and the highest value was found on the soft soil, and the lowest on the hard soil.

  • PDF

Study on the Base and Subbase Method of Agricultural Road -On the Resilient Modulus Characteristics of the Subgrade and Cement Treated Base- (농도의 기층 및 보조기층 공법연구 -노상 및 시멘트 안정 처리층의 Mr 특성을 중심으로-)

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.66-81
    • /
    • 1989
  • The characteristics of resilient modulus(Mr) which dominates the life of pavement and the design of pavement were investigated on the test specimens which were cement treated and non-treated of the three different soil types. The results are summarized as follows : 1. The resilient modulus was decreased by increasing the cyclic deviator stress ($\sigma$d) , especially the resilient modulus was gradually decreased or sometimes increased when the value of ad was greater than 0.75- 1. 0kg/cm$^2$. 2. The resilient modulus was increased by increasing the homogeneous confined stress ($\sigma$do) and such phenomena were distinct on the coarse soils. 3. The resilient modulus was increased by increasing the ratio of confined stress(Kc), and this phenomena were eminent on the coarse soils too, and the higher permanent strain was showed by increasing the value of Kc. 4. In the drained cyclic triaxial compression test, the value of ad, Kc, and (Oho) was introduced by the following interrelated equations which were similar to the Mr model of Cole. Kcn/Mr=K1(J$_2$/ $\tau$oct)K2 ............. (coarse soli) Mcn/Mr=K3($\sigma$dp/ $\tau$f)k4 ...............(fine soils) 5. The stress path was not much affected by the value of Mr, however, moisture content, dry desity, and contant of fines affected the value of Mr. 6. In the soil-cement specimens, the resilient compression strain($\varepsilon$d) was decreased by the increment of the $\sigma$ho, and Mr was decreased by increasing the $\sigma$d 7. In the flexible pavement. the cement treated layer should be designed not to fail by the fatigue before the designed traffic load, and actually the pavement could cover the traffic load to a certain extent under the post-crack phase, therefore farther studies on this phenomena' are required in the design analysis. 8. The finite element computer program (ANALYS) was used for displacement analysis of pavement containing the cement-treated layer, The result showed that the program used for this analysis was proved to be usable.

  • PDF

The Synthesis of Diphenyl ethanolamidophosphate (DPEAP) and the Flame Retardancy of Cotton Fabric (Diphenyl ethanolamidophosphate의 합성과 면섬유에 대한 방염성)

  • Huh, Man Woo;Yoon, Jong Ho;Cho, Yong Suk;Kim, Young Suk;Lim, Hak Sang
    • Textile Coloration and Finishing
    • /
    • v.8 no.2
    • /
    • pp.25-34
    • /
    • 1996
  • Diphenyl ethanolamidophosphate(DPEAD) was synthesized for the purpose of developing a new flame retardant for cotton fabric. As the intermediate material was used diphenyl chlorophosphate(DPCP) and it was synthesized by using phosphorus oxychloride and phenol as the starting materials. The final product DPEAP was obtained by the reaction of DPCP and ethanolamine. The flame retardancy of cotton fabrics treated by DPEAP through pad-dry-cure(PDC) process was examined at various conditions. The physical property change of the DPEAP treated cotton fabrics were investigated by examining the drape stiffness, the wrinkle recovery, and the tensile strength. The results are summarized as follows: (1) DPEAP has shown excellent flame retardancy on cotton fabrics in comparison to other flame retardants for cotton fabrics available commercially. (2) The optimal condition for PDC process found was that the curing temperature was 16$0^{\circ}C$, the DPEAP concentration was 10%, the catalyst $({NH_{4})_{2}HPO_{4}$ concentration was 7.0%, and the fixing agent hexamethylol melamine (HMM)/DPEAP weight ratio was 1/8. (3) The wrinkle recovery of the processed fabrics increased with increasing DPEAP concentration. (4) The drape stiffness of the cotton fabrics treated by DPEAP have shown essentially no change until increasing DPEAP concentration to 15 %, however DPEAP concentration exceeds 20% the drape stiffness increased drastically with increasing DPEAP concentration. When DPEAP concentration is kept constant the drape stiffness increased with increasing $({NH_{4})_{2}HPO_{4}$ concentration and HMM/DPEAP weight ratio. (5) The tensile strength of the processed fabrics was lower than that of untreated fabrics, but the tensile strength retention increased with increasing DPEAP concentration.

  • PDF

Properties of Polymer-Modified Pastes with Alumina Powder (알루미나 분말을 혼입한 폴리머 개질 페이스트의 성질)

  • Joo, Myung-Ki;Lee, Youn-Su;Yeon, Kyu-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.539-547
    • /
    • 2007
  • The effects of binder and alumina content on the setting time, drying shrinkage, strength, freezing and thawing resistance and water absorption of polymer-modified pastes with alumina powder were examined. As a result the setting time of the polymer-modified pastes with alumina powder tended to delay with increasing binder content. Irrespective of the type of polymer, the drying shrinkage of the polymer-modified pastes with alumina powder tended to decrease with increasing binder content and alumina powder content. Regardless of the type of polymer, the tensile and adhesion strengths of the polymer-modified pastes with alumina powder tended to increase with increasing binder content and alumina powder content. Irrespective of the type of polymer, the durability factors of the polymer-modified pastes with alumina powder tended to increase with increasing alumina content. Irrespective of the type of polymer, the water absorptions of the polymer-modified pastes with alumina powder tended to decrease with increasing binder content and alumina content.

Future Change Using the CMIP5 MME and Best Models: II. The Thermodynamic and Dynamic Analysis on Near and Long-Term Future Climate Change over East Asia (CMIP5 MME와 Best 모델의 비교를 통해 살펴본 미래전망: II. 동아시아 단·장기 미래기후전망에 대한 열역학적 및 역학적 분석)

  • Kim, Byeong-Hee;Moon, Hyejin;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.249-260
    • /
    • 2015
  • The changes in thermodynamic and dynamic aspects on near (2025~2049) and long-term (2075~2099) future climate changes between the historical run (1979~2005) and the Representative Concentration Pathway (RCP) 4.5 run with 20 coupled models which employed in the phase five of Coupled Model Inter-comparison Project (CMIP5) over East Asia (EA) and the Korean Peninsula are investigated as an extended study for Moon et al. (2014) study noted that the 20 models' multi-model ensemble (MME) and best five models' multi-model ensemble (B5MME) have a different increasing trend of precipitation during the boreal winter and summer, in spite of a similar increasing trend of surface air temperature, especially over the Korean Peninsula. Comparing the MME and B5MME, the dynamic factor (the convergence of mean moisture by anomalous wind) and the thermodynamic factor (the convergence of anomalous moisture by mean wind) in terms of moisture flux convergence are analyzed. As a result, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter and summer over EA. However, over the Korean Peninsula, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter, whereas the thermodynamic factor causes the higher increasing trend of precipitation in B5MME than the MME during the boreal summer. Therefore, it can be noted that the difference between MME and B5MME on the change in precipitation is affected by dynamic (thermodynamic) factor during the boreal winter (summer) over the Korean Peninsula.

Humic Acid Removal from Water by Iron-coated Sand: A Column Experiment

  • Kim, Hyon-Chong;Park, Seong-Jik;Lee, Chang-Gu;Han, Yong-Un;Park, Jeong-Ann;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.41-47
    • /
    • 2009
  • Column experiments were performed in this study to investigate humic acid adhesion to iron oxide-coated sand (ICS) under different experimental conditions including influent humic acid concentration, flow rate, solution pH, and ionic strength/composition. Breakthrough curves of humic acid were obtained by monitoring effluents, and then column capacity for humic acid adsorption ($C_cap$), total adsorption percent (R), and mass of humic acid adsorbed per unit mass of filter media ($q_a$) were quantified from these curves. Results showed that humic acid adhesion was about seven times higher in ICS than in quartz sand at given experimental conditions. This indicates that humic acid removal can be enhanced through the surface charge modification of quartz sand with iron oxide coating. The adhesion of humic acid in ICS was influenced by influent humic acid concentration. $C_cap$ and $q_a$ increased while R decreased with increasing influent humic acid concentration in ICS column. However, the influence of flow rate was not eminent in our experimental conditions. The humic acid adhesion was enhanced with increasing salt concentration of solution. $C_cap$, $q_a$ and R increased in ICS column with increasing salt concentration. On the adhesion of humic acid, the impact of CaCl2 was greater than that of NaCl. Also, the humic acid adhesion to ICS decreased with increasing solution pH. $C_cap$, $q_a$ and R decreased with increasing solution pH. This study demonstrates that humic acid concentration, salt concentration/composition, and solution pH should be controlled carefully in order to improve the ICS column performance for humic acid removal from water.

A Study on the Slope Stability of Embankment in Consideration of Seismic Coefficient (지진계수를 고려한 제방의 사면안정에 관한 연구)

  • 강우묵;지인택;이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.105-120
    • /
    • 1991
  • This study was performed to investigate the minimum safety factor of embankment in consideration of seismic coefficient by the psuedo-static analysis The variables were cohesion, the internal friction angle, angle of slope, height of seepage, height of embankment, depth of replacement The results obtained were compared with those by Fellenius method, simplified Bishop method and Janbu method. The results were summarized as follows: 1.The increasing rate of the minimum safety factor with the increasing of cohesion appeared larger in Fellenius method and Bishop method than in Janbu method. And that with the increasing of the internal friction angle appeared the lowest value in Janbu method. The minimum safety factor was influenced larger on the internal friction angle than on cohesion. 2.The variation of the minimum safety factor with the height of seepage at 0m and 5 m was nearly similar to Fellenius method, Bishop method and Janbu method. On the other hand, it was decreased suddenly at 25 m. 3.The minimum safety factor with the height of embankment was decreased remarkably under 10 m with the increasing of seismic coefficient. But, it was decreased slowly more than 10 m. As the height of embankment was low, the influence of cohesion appeared larger. 4.In heigher case of the depth of replacement, the phenomenon of reduction of the minimum safety factor appeared remarkably with seismic coefficient increased. And in lower case of the depth of replacement, the minimum safety factor was similar in Fellenius method and Bishop mehtod. But it appeared larger in Bishop method and Janbu method than in Fellenius method with the depth of replacement increased. 5.As the cohesion and the internal friction angle were large, the phenomenon of reduction of the minimum safety factor with the increasing of seismic coefficient appeared remarkably. Also, the influence of seismic coefficient in minimum safety factor appeared larger with the soil parameter increased. 6.When the seismic coefficient was considerated, investigation of the structural body on the slope stability appeared profitably in Fellenius method and Janbu method than in Bishop method.

  • PDF

Analysis of dust emission characteristic by drop impact on decomposed granite soil (낙하 충격에 의한 풍화토의 비산먼지 발생 특성 분석)

  • Min, Seul-Gi;Son, Young-Hwan;Park, Jae-Sung;Noh, Soo-Kack;Bong, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.39-45
    • /
    • 2014
  • Dust is mostly caused by human activity. The effect of natural factors on dust emission were studied in many research, but the little effort in researching artificial factors of dust emission. The object of study is to analysis dust emission characteristic by drop impact. Particle matter $10{\mu}m$ ($PM_{10}$) was measured by drop impact on paved soil with changing drop height, weight and drop size. Increasing drop height cause more $PM_{10}$ emission. Increasing drop weight cause more $PM_{10}$ emission but had limit weight for increasing dust emission. Because the exceed kinetic energy of drop weight penetrate the soil surface. The limit perimeter was exist that separating $PM_{10}$ emission aspect. Under limit perimeter, $PM_{10}$ emission was increasing while perimeter was increasing, but over limit perimeter showed the opposite aspect. Regression equations for estimating $PM_{10}$ with kinetic energy and perimeter were made under limit perimeter and over limit perimeter. The $R^2$ of those equations were 0.784, 0.743. The error has occurred between measured $PM_{10}$ and calculated $PM_{10}$ in the equation under limit perimeter. But using equation of case for over limit perimeter, PM10 can be estimated with kinetic energy and drop perimeter.