References
-
Teermann, I. P. and Jekel, M. R., “Adsorption of humic substances onto
$\beta-FeOOH$ and its chemical regeneration,” Water Sci. Technol., 40, 199-206 (1999) https://doi.org/10.1016/S0273-1223(99)00657-5 - Wilding, A., Liu, R., and Zhou, J. L., “Dynamic behaviour of river colloidal and dissolved organic matter through crossflow ultrafiltration system,” J. Colloid Interf. Sci., 287, 152-158 (2005) https://doi.org/10.1016/j.jcis.2005.01.114
-
Alborzfar, M., Jonsson, G., and
$Gr{\phi}n$ , C., “Removal of natural organic matter from two types of humic ground waters by nanofiltration,” Water Res., 32, 2983-2994 (1998) https://doi.org/10.1016/S0043-1354(98)00063-3 - Hong, S., “The role of pH and initial concentration on GAC adsorption for removal of natural organic matter,” Environ. Eng. Res., 3, 183-190 (1998)
- Balnois, E., Wilkinson, K. J., Lead, J. R., and Buffle, J., “Atomic force microscopy of humic substances: effects of pH and ionic strength,” Environ. Sci. Technol., 33, 3911-3917 (1999) https://doi.org/10.1021/es990365n
- Bai, R. and Zhang, X., “Polypyrrole-coated granules for humic acid removal,” J. Colloid Interf. Sci., 243, 52-60 (2001) https://doi.org/10.1006/jcis.2001.7843
- Murray, C. A. and Parsons, S. A., “Preliminary laboratory investigation of disinfection by-product precursor removal using an advanced oxidation process,” Water Environ. J., 20, 123-129 (2006) https://doi.org/10.1111/j.1747-6593.2005.00004.x
-
Fein, J. B., Boily, J.-F.,
$G\ddot{u}cl\ddot{u}$ , K., and Kaulbach, E., “Experimental study of humic acid adsorption onto bacteria and Al-oxide mineral surfaces,” Chem. Geol., 162, 33-45 (1999) https://doi.org/10.1016/S0009-2541(99)00075-3 - Gu, B., Schmitt, J., Chen, Z., Liang, L., and McCarthy, J. F., “Adsorption and desorption of different organic matter fractions on iron oxide,” Geochim. Cosmochim. Acta, 59, 219-229 (1995) https://doi.org/10.1016/0016-7037(94)00282-Q
- Filius, J. D., Lumsdon, D. G., Meeussen, J. C. L., Hiemstra, T., and Van Riemsduk, W. H., “Adsorption of fulvic acid on goethite,” Geochim. Cosmochim. Acta, 64, 51-60 (2000) https://doi.org/10.1016/S0016-7037(99)00176-3
- Fu, H. and Quan, X., “Complexes of fulvic acid on the surface of hematite, goethite, and akaganeite: FTIR observation,” Chemosphere, 63, 403-410 (2006) https://doi.org/10.1016/j.chemosphere.2005.08.054
- Weng, L., van Riemsdijk, W. H., and Hiemstra, T., “Adsorption of humic acids onto goethite: effects of molar mass, pH and ionic strength,” J. Colloid Interf. Sci., 314, 107-118 (2007) https://doi.org/10.1016/j.jcis.2007.05.039
- Lai, C. H. and Chen, C. Y., “Removal of metal ions and humic acid from water by iron-coated filter media,” Chemosphere, 44, 1177-1184 (2001) https://doi.org/10.1016/S0045-6535(00)00307-6
- Lai, C. H., Chen, C. Y., Wei, B. L., and Yeh, S. H., “Cadmium adsorption on goethite-coated sand in the presence of humic acid,” Water Res., 36, 4943-4950 (2002) https://doi.org/10.1016/S0043-1354(02)00009-X
- Kim, S. B., Park, S. J., Lee, C. G., Choi, N. C., and Kim, D. J., “Bacteria transport through goethite-coated sand: effects of solution pH and coated sand content,” Colloids Surf. B, 63, 236-242 (2008) https://doi.org/10.1016/j.colsurfb.2007.12.003
- Scholl, M. A., Mills, A. L., Herman, J. S., and Hornberger, G. M., “The influence of mineralogy and solution chemistry on the attachment of bacteria to representative aquifer materials,” J. Contam. Hydrol., 6, 321-336 (1990) https://doi.org/10.1016/0169-7722(90)90032-C
- Ams, D. A., Fein, J. B., Dong, H., and Maurice, P. A., “Experimental measurements of the adsorption of Bacillus subtilis and Pseudomonas mendocina onto Fe-oxyhydroxidecoated and uncoated quartz grains,” Geomicrobiol. J., 21, 511-519 (2004) https://doi.org/10.1080/01490450490888172
- Kilduff, J. E. and Karanfil, T., “Trichloroethylene adsorption by activated carbon preloaded with humic substances: effects of solution chemistry,” Water Res., 36, 1685-1698 (2002) https://doi.org/10.1016/S0043-1354(01)00381-5
- Saito, T., Koopal, L. K., van Riemsdijk, W. H., Nagasaki, S., and Tanaka, S., “Adsorption of humic acid on goethite: isotherms, charge adjustments, and potential profiles,” Langmuir, 20, 689-700 (2004) https://doi.org/10.1021/la034806z
- Kim, E. K. and Walker, H. W., “Effect of cationic polymer additives on the adsorption of humic acid onto iron oxide particles,” Colloid. Surf. A, 194, 123-131 (2001) https://doi.org/10.1016/S0927-7757(01)00791-9
- Weng, L., van Riemsdijk, W. H., Koopal, L. K., and Hie mstra, T., “Adsorption of humic substances onto goethite: comparison between humic acids and fulvic acids,” Environ. Sci. Technol., 40, 7494-7500 (2006) https://doi.org/10.1021/es060777d
- Vermeer, A. W. P., van Riemsdijk, W. H., and Koopal, L. K., “Adsorption of humic acid to mineral particles. 1. Specific and electrostatic interactions,” Langmuir, 14, 2810-2819 (1998) https://doi.org/10.1021/la970624r
Cited by
- Immobilization of Layered Double Hydroxide into Polyvinyl Alcohol/Alginate Hydrogel Beads for Phosphate Removal vol.17, pp.3, 2012, https://doi.org/10.4491/eer.2012.17.3.133
- Efficient Adsorptive Removal of Humic Acid from Water Using Zeolitic Imidazole Framework-8 (ZIF-8) vol.226, pp.2, 2015, https://doi.org/10.1007/s11270-014-2280-7
- Modacrylic anion-exchange fibers for Cr(VI) removal from chromium-plating rinse water in batch and flow-through column experiments vol.52, pp.13, 2017, https://doi.org/10.1080/10934529.2017.1356192
- Laboratory and pilot-scale field experiments for application of iron oxide nanoparticle-loaded chitosan composites to phosphate removal from natural water pp.1479-487X, 2018, https://doi.org/10.1080/09593330.2017.1310937
- Effects of organic matter coatings on the mobility of goethite colloids in model sand and undisturbed soil vol.69, pp.2, 2018, https://doi.org/10.1111/ejss.12510
- Adsorption Characteristics of As(V) onto Cationic Surfactant-Modified Activated Carbon vol.14, pp.3, 2009, https://doi.org/10.4491/eer.2009.14.3.153
- Flow-through experiments for bacteriophage MS2 removal by iron oxide-impregnated fiberglass vol.54, pp.8, 2009, https://doi.org/10.1080/19443994.2014.899521
- The mechanisms of conventional pollutants adsorption by modified granular steel slag vol.26, pp.1, 2021, https://doi.org/10.4491/eer.2019.352