• 제목/요약/키워드: Incompressible Flow Analysis

검색결과 336건 처리시간 0.024초

폴라캐비티(Polar Cavity)의 유동특성에 관한 수치해석 (A Numerical Analysis on the Flow Characteristics of Polar Cavity)

  • 김진구;조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.127-133
    • /
    • 2000
  • A numerical study of the flow of incompressible fluid in a polar cavity is presented. Irregular grids is proposed by applying the interior division principle to the variables on polar coordinate grid formation. Stability analysis and the pressure correction method of SOLA algorithms were discussed in detail on cylindrical coordinates. The results present that unsteady flow behavior appears over $Re=3{\times}10^4$ on polar cavities but nearly steady state at $Re=10^4$. Furthermore, with increasing Reynolds numbers, vortices behaviors indicate more complicated flow phenomena and more severe temporal fluctuation of total kinetic energy and time variation of velocity components at arbitrary pick-up points are detected in case of $Re=5{\times}10^4$.

  • PDF

정규배열내의 실린더 사이에서의 완전발달된 층류 유동의 기하학적 계수의 해석 (Analysis of Geometric Parameters for Fully Developed Laminar Flow Between Cylinders Arranged in Regular Array)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권5호
    • /
    • pp.1037-1049
    • /
    • 2001
  • Considerable interest has evolved in the flow of non-Newtonian fluids in channels of noncircular cross section in compact heat exchanges. Analytical solution was developed for prediction of the flow rate and maximum velocity in steady laminar flow of any incompressible, time-independent non-Newtonian fluids in straight closed and open channels of arbitrary, but axially unchanging cross section. The geometric parameters and function of shear describing the behavior of the fluid model were evaluated for fluid flow among a bundle of rods arranged in triangular and square array. Numerical values of dimensionless maximum velocities, mean velocities, pressure-drop-flow parameters and friction factors were evaluated as a function of porosity and pitch-to-radius ratio.

  • PDF

SENSITIVITY ANALYSIS OF A SHAPE CONTROL PROBLEM FOR THE NAVIER-STOKES EQUATIONS

  • Kim, Hongchul
    • Korean Journal of Mathematics
    • /
    • 제25권3호
    • /
    • pp.405-435
    • /
    • 2017
  • We deal with a sensitivity analysis of an optimal shape control problem for the stationary Navier-Stokes system. A two-dimensional channel flow of an incompressible, viscous fluid is examined to determine the shape of a bump on a part of the boundary that minimizes the viscous drag. By using the material derivative method and adjoint variables for a shape sensitivity analysis, we derive the shape gradient of the design functional for the model problem.

배출물 저감을 위한 촉매변환기 내의 3차원 유동해석 (Three-Dimensional Flow Analysis of Catalytic Converter for Reducing Emission)

  • 정수진;김우승
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.55-65
    • /
    • 1998
  • A numerical and experimental study of three-dimensional steady incompressible non-reacting flow inside various dual-monolith catalytic converters has been conducted for achievement of performance improvement, reduction of light-off time and longer service life by improving the flow uniformity within the monolith. In this study, the effects of curvature of inlet exhaust pipe and monolith brick length on the flow uniformity and pressure drop within monolith were numerically investigated. The computations are confirmed by measurements of steady flow. The agreement between computations and experiment was relatively good. The result of this study shows that curvature of inlet exhaust pipe and monolith brick length gave a great effect on the flow uniformity and the shorter the brick length, the lower flow uniformity and the less pressure drop.

  • PDF

터빈 실(Seal)의 유동 해석 (Labyrinth Seal Effects in Turbines)

  • 송범호;송성진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.158-162
    • /
    • 2000
  • Secondary flows in gas turbines, especially those associated tip clearance and labyrinth seals, have become a focus of interest for engine manufacturers. In the past, many analytical and experimental studies, which focused solely on the flows in either tip clearances or seals, have been conducted. This paper presents an analytical model that describes the flow response in a single stage turbine induced by a finite sealing gap at the turbine rotor. The flow is assumed to be axisymmetric and the analysis is done in the meridional plane. Upon going through the stage, the radially uniform upstream flow is assumed to split into two streams one associated with the seal and the other which has gone through the blades. The former is referred to as the leakage flow, and the latter is referred the as the passage flow. The passage flow is assumed to be inviscid and incompressible while the flow in the seal can be modeled as either inviscid or viscous. Thus, the model is capable of predicting the kinematic effects of labyrinth seals on the turbine flow field.

  • PDF

박막펌핑을 이용한 Nano Fountain-Pen의 유동 특성에 관한 수치적 연구 (Numerical Analysis of the Flow Characteristics in the Nano Fountain-Pen Using Membrane Pumping)

  • 이진형;이영관;이석한;김훈모;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제9권2호
    • /
    • pp.19-24
    • /
    • 2006
  • Nano fountain-pen is a novel device to make the constant patterning in micro process using new designed probe. Fountain-pen nanolithography (FPN) is applied for constant supply of liquid in conjunction of patterns and surface variation in the micro process. In this study, nuo fountain-pen is composed with reservoir, micro channels, tip and scondary chamber. Instead of traditional method only using capillary force, liquid can be definitely and exactly injected with membrane pumping by the repulse force of tip. It is dfficult to perform experiments in the micro range so that we carried out a numerical analysis for internal flow, using a commercial code, FlUENT, The velocity, pressure and flow rate are obtained under laminar, unsteady, three-dimensional incompressible flow with no-slip condition, and results are graphically described.

압축성 회전 유동에서의 Taylor-Proudman 기둥의 에너지 전달에 관한 해석 (Energy transport analysis for the Taylor-Proudman column in la rapidly-rotating compressible fluid)

  • 박준상;현재민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.329-332
    • /
    • 2002
  • A theoretical study is made of the steady flow of a compressible fluid in a rapidly rotating finite cylinder. Flow is generated by imposing mechanical and/or thermal disturbances at the rotating endwall disks. Both the Ekman and Rossby numbers are small. A detailed consideration is given to the energy budget for a control volume in the Ekman boundary layer. A combination of physical variables, which is termed the energy contents, consisting of temperature and modified angular momentum, emerges to be relevant. The distinguishing features of a compressible fluid, in contrast to those of an incompressible fluid, are noted. For the Taylor-Proudman column to be sustained, in the interior, it is shown that the net energy transport between the solid disk wall and the interior fluid should vanish. Physical rationalizations are facilitated by resorting to the concept of the afore-stated energy content.

  • PDF

섬유강화 플라스틱 복합재의 성형공정에 관한 연구(일방향 섬유강화 복합재의 점도측정 및 유동해석) (A Study on Molding Process Fiber Reinforced Plastic Composites (Flow analysis Measurement of viscosity of Unidirectional Fiber Reinforced Plastic Composites))

  • 조선형;안종윤;이국웅;윤성운
    • 한국공작기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.103-114
    • /
    • 2001
  • During a compression molding process of Unidirectional Fiber Reinforced Plastic Composites, control of filling patterns in mold and distribution of fiber is needed to predict the effects of molding parameters on the flow characteristics. To obtain an excellent product and decide optimum molding conditions, it is important to know the relationship between molding conditions and viscosity. In this study, the anisotropic viscosity of the Unidirectional Fiber Reinforced Plastic Composites is measured by using the parallel plastometer. The model for flow state has been simulated by using the viscosity. The composites is treated as an incompressible New-tonian fluid. The effects of longitudinal/transverse viscosity ration A and slip parameter $\alpha$ on buldging phenomenon and mold filling patterns, are also discussed.

  • PDF

Fractional Step Method을 이용한 원형 실린더 주위의 난류 유동해석 (Turbulent Flow Analysis of a Circular Cylinder Using a Fractional Step Method)

  • 박금성;박원규
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.152-157
    • /
    • 2003
  • As computer capacity has been progressed continuously, the studies of the flow characteristics have been performing by the numerical methods actively. Recent numerical simulation has a tendency to require the higher-order accuracy in time, as well as in space. This tendency is more true in LES and acoustic noise simulation. In this study, 3-dimensional unsteady Incompressible Navier-Stokes equation was solved by numerical method using the fractional step method with the fourth order compact pade scheme to achieve high accuracy To validate the present code and algorithm, 3D flow-field around a cylinder was simulated. The drag coefficient and lift coefficient were computed and, then, compared with experiment. The present code will be tailored to LES simulation for more accurate turbulent flow analysis.

  • PDF

Eulerian-Lagrangian 방법을 사용한 임의 물체주위 유동해석의 정도 향상을 위한 연구 (A Study of Accuracy Improvement of an Analysis of Flow around Arbitrary Bodies by Using an Eulerian-Lagrangian Method)

  • 박일룡;전호환
    • 한국전산유체공학회지
    • /
    • 제6권3호
    • /
    • pp.19-26
    • /
    • 2001
  • An Eulerian-Lagrangian method, so called immersed boundary method, is used for analysing viscous flow around arbitrary bodies, where governing equations are discretized on a regular grid by using a finite volume method. To improve the accuracy of flow near body boundaries, a second-order accurate interpolation scheme is used and a level-set based grid deformation method is presented to construct the adaptive grids around body boundaries. The present scheme is used to simulate steady flow around a semicircular cylinder mounted on the bottom of flow domain and calculated results are validated by results of a body fitted grid method. Finally, present method is applied to a complex flow around multi body and the usefulness is checked by investigating calculated results.

  • PDF