• Title/Summary/Keyword: Incompressible Flow Analysis

Search Result 336, Processing Time 0.024 seconds

Numerical Analysis of Turbulent Flow Through Turbine Flow Meter (터빈유량계의 난류유동에 대한 수치해석)

  • Kim, J.B.;Park, K.A.;Ko, S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.573-578
    • /
    • 2000
  • Flow through turbine flow meter is simulated by solving the incompressible Navier-Stockes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved steadily in rotating reference frames and the centrifugal force and tile Coriolis force are added to the equation of motion. The standard $k-{\varepsilon}$ model is employed to evaluate turbulent viscosity. At first the stability and accuracy of the program is verified with the flow through a square duct with a $90^{\circ}$ bend and on the flat plate.

  • PDF

ANALYSIS OF FLOW FIELD AROUND NON-LIFTING FORWARD FLIGHT ROTOR USING LOW MACH NUMBER PRECONDITIONING (저마하수 예조건화 기법을 이용한 무양력 전진 비행 로터 주위 유동장 해석)

  • Kim, Jee-Woong;Park, Soo-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.251-255
    • /
    • 2008
  • Flow field around helicopter involves incompressible flow near the blade root and compressible flow at the blade tip. A problem occurs for low Mach number flow due to the stiffness of the governing equations. Time-derivative preconditioning techniques have been incorporated to reduce the stiffness that occurs at low speed region. The preconditioned form of the compressible Navier-Stokes and Euler equations is used. Computations are performed for the Caradonna-Tung's hovering and non-lifting forward flight case. Computational results are in good agreement with the experimental data.

  • PDF

Analysis of the aeroacoustic characteristics of cross-flow fan using commercial CFD code (상용 CFD코드를 이용한 횡류홴 공력소음 특성 해석)

  • Jeon, Wan-Ho;Gi, Jeong-Mun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.334.1-334
    • /
    • 2002
  • In this study, a cross-flow fan system used in indoor unit of the split-type air conditioner is analyzed by computational simulation. A commercial CFD code - Fluent - is used to calculate the performance and its unsteady flow characteristics. The unsteady incompressible Wavier-Stokes equations are solved using a sliding mesh technique on the interface between rotating fan region and the outside. The acoustic pressure is calculated by using Ffowcs-Williams and Hawkings equation. (omitted)

  • PDF

Flow Analysis in a Rotating Container with Axial Injection and Radial Ejection (축방향 유입과 반경방향 유출이 있는 회전용기 내의 유동해석)

  • Park, Jun-Sang;Sohn, Jin-Gug
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • An investigation has been made of a viscous incompressible flow in a circular cylindrical tank. The flow is driven by the spinning bottom disk of tank together with/without central injection and radial uniform-ejection through the sidewall. Numerical solutions of steady and unsteady flows to 3-dimensional Navier-Stokes equation were obtained for several cases of injection strength. In a moderate flow rate of injection, the mass transfer occurs through the boundary layers but, as the flow rate increases, the inner region far from the container walls takes part in mass transfer.

Nonlinear Characteristics of Low-speed Flow Induced Vibration for the Safety Design of Micro Air Vehicle

  • Chang, Tae-Jin;Kim, Dong-Hyun;Lee, In
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.873-881
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of an equivalent airfoil system of MAV have been investigated in low Reynolds number flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-Stokes equations. The present fluid/structure interaction analysis is based on one of the most accurate computational approach with computational fluid dynamics (CFD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed for the low Reynolds region that has a dominancy of flow viscosity. The effects of Reynolds number and initial angle of attack on the fluid/structure coupled vibration instability are shown and the qualitative trend of FIV phenomenon is investigated.

Study on Optimization of Aerodynamic Design of A Jet Fan (제트송풍기의 공력설계 최적화에 관한 연구)

  • Seo, Seoung-Jin;Kim, Kwang-Yong;Chang, Dong-Wook
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.439-443
    • /
    • 2002
  • In this study, three-dimensional incompressible viscous flow analysis and optimization using response surface method are presented for the design of a jet fan. Steady, incompressible, three-dimensional Reynolds averaged Wavier-Stokes equations are used as governing equations, and standard k-$\epsilon$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Sweep angles and maximum thickness of blade are used as design variables for the shape optimization of the impeller in response surface method. The experimental points which are needed to construct response surface are obtained from the D-optimal design and Full Factorial design and relations between design variables and response surface are examined.

  • PDF

Pollutant Dispersion Analysis Using the Gaussian Puff Model with the Numerical Flowfield Information (유동장 수치해석이 포함된 퍼프모델을 이용한 오염물질의 확산 해석)

  • Jung Y. R.;Park W. G.;Park O. H.
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.12-20
    • /
    • 1999
  • The computations of the flowfield and pollutant dispersion over a flat plate and the Russian hills of various slopes are described. The Gaussian plume and the puff model have been used to calculate concentration of pollutant. The Reynolds-averaged unsteady incompressible Navier-Stokes equation with low Reynolds κ-ε model has been used to calculate the flowfield. The flow data of a flat plate and the Russian hills from Navier-Stokes equation solutions has been used as the input data for the puff model. The computational results of flowfield agree well with experimental results of both a flat plate and Russian hills. The concentration prediction by the Gaussian plume model and the Gaussian puff model also agrees flirty well with experiments.

  • PDF

STABILIZED-PENALIZED COLLOCATED FINITE VOLUME SCHEME FOR INCOMPRESSIBLE BIOFLUID FLOWS

  • Kechkar, Nasserdine;Louaar, Mohammed
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.519-548
    • /
    • 2022
  • In this paper, a stabilized-penalized collocated finite volume (SPCFV) scheme is developed and studied for the stationary generalized Navier-Stokes equations with mixed Dirichlet-traction boundary conditions modelling an incompressible biological fluid flow. This method is based on the lowest order approximation (piecewise constants) for both velocity and pressure unknowns. The stabilization-penalization is performed by adding discrete pressure terms to the approximate formulation. These simultaneously involve discrete jump pressures through the interior volume-boundaries and discrete pressures of volumes on the domain boundary. Stability, existence and uniqueness of discrete solutions are established. Moreover, a convergence analysis of the nonlinear solver is also provided. Numerical results from model tests are performed to demonstrate the stability, optimal convergence in the usual L2 and discrete H1 norms as well as robustness of the proposed scheme with respect to the choice of the given traction vector.

Finite element analysis of viscoelastic flows in a domain with geometric singularities

  • Yoon, Sung-Ho;Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.3
    • /
    • pp.99-110
    • /
    • 2005
  • This work presents results of finite element analysis of isothermal incompressible creeping viscoelastic flows with the tensor-logarithmic formulation of the Leonov model especially for the planar geometry with singular comers in the domain. In the case of 4:1 contraction flow, for all 5 meshes we have obtained solutions over the Deborah number of 100, even though there exists slight decrease of convergence limit as the mesh becomes finer. From this analysis, singular behavior of the comer vortex has been clearly seen and proper interpolation of variables in terms of the logarithmic transformation is demonstrated. Solutions of 4:1:4 contraction/expansion flow are also presented, where there exists 2 singular comers. 5 different types spatial resolutions are also employed, in which convergent solutions are obtained over the Deborah number of 10. Although the convergence limit is rather low in comparison with the result of the contraction flow, the results presented herein seem to be the only numerical outcome available for this flow type. As the flow rate increases, the upstream vortex increases, but the downstream vortex decreases in their size. In addition, peculiar deflection of the streamlines near the exit comer has been found. When the spatial resolution is fine enough and the Deborah number is high, small lip vortex just before the exit comer has been observed. It seems to occur due to abrupt expansion of the elastic liquid through the constriction exit that accompanies sudden relaxation of elastic deformation.

Numerical analysis for the development of a Mixed-flow In-line duct fan with a high performance (고성능 사류식 In-line duct fan의 개발을 위한 전산해석)

  • Kim, Sung-Kon;Cho, Lee-Sang;Cho, Jin-Soo;Won, Eu-Pil
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.604-609
    • /
    • 2001
  • This numerical analysis uses the lifting surface method and frequency-domain panel method based on the linear compressible aerodynamic theory. Increased knowledge of flow conditions within mixed-flow fan should indicates means of improving performance of these turbomachines. Thus, only an approximate solution is obtained whose prime intent is to recognize the most significant characteristics of the "ideal" geometry. For a given set of operating condition, the flow conditions within mixed-flow fan depend on the geometry of the machine (three-dimensional flow effects) and on the properties of the fluid. But most treatments of the problem have been concerned with the two-dimensional flow effects for incompressible, non-viscous fluids. Interest in the field of mixed-flow fan resulted in the undertaking of a program to develop reliable design procedures that would avoid the need for lengthy development work.

  • PDF