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Abstract

This work presents results of finite element analysis of isothermal incompressible creeping viscoelastic
flows with the tensor-logarithmic formulation of the Leonov model especially for the planar geometry with
singular corners in the domain. In the case of 4:1 contraction flow, for all 5 meshes we have obtained solu-
tions over the Deborah number of 100, even though there exists slight decrease of convergence limit as the
mesh becomes finer. From this analysis, singular behavior of the corner vortex has been clearly seen and
proper interpolation of variables in terms of the logarithmic transformation is demonstrated. Solutions of
4:1:4 contraction/expansion flow are also presented, where there exists 2 singular corners. 5 different types
spatial resolutions are also employed, in which convergent solutions are obtained over the Deborah number
of 10. Although the convergence limit is rather low in comparison with the result of the contraction flow,
the results presented herein seem to be the only numerical outcome available for this flow type. As the flow
rate increases, the upstream vortex increases, but the downstream vortex decreases in their size. In addition,
peculiar deflection of the streamlines near the exit corner has been found. When the spatial resolution is fine
enough and the Deborah number is high, small lip vortex just before the exit corner has been observed. It
seems to occur due to abrupt expansion of the elastic liquid through the constriction exit that accompanies
sudden relaxation of elastic deformation.
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1. Introduction

In high Deborah number flows, numerical modeling of
viscoelastic flow in a domain with sharp corners or geo-
metric singularities has been a formidable task in the
field of computational non-Newtonian fluid dynamics.
Its difficulty may be expressed via improper mesh con-
vergence, solution inaccuracy and violation of positive
definiteness of the conformation tensor (violation of
strong ellipticity of partial differential equations), which
ultimately result in degradation of the whole numerical
scheme. Recently a new formalism of existing consti-
tutive equations has been suggested by Fattal and Kup-
ferman (2004), which forbids violation of positive
definiteness of the conformation tensor simply employ-
ing logarithmic transform. In the current authors’ opin-
ion, it may be quite a breakthrough that possibly reveals
undiscovered area of solutions in computation of high
Deborah number viscoelastic flows.

The first finite element implementation of this new for-
malism has been performed by Hulsen and coworkers
(2005), who have demonstrated dramatic stabilization of
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the numerical procedure as long as proper viscoelastic con-
stitutive equations are included. Whereas they clearly dem-
onstrate the potential of the new formulation in modeling
of viscoelastic flow past a cylinder, Kwon (2004) has given
a numerical result of the flow modeling in the domain with
a sharp corner. In comparison with the conventional
method, stable computation has been demonstrated even in
this flow domain with a sharp corner. In the paper (Kwon,
2004), it has been concluded that this new method may
work only for constitutive equations proven globally sta-
ble. Thus as a result, the stability constraint has to be taken
into serious consideration.

Almost no computational result regarding the viscoelas-
tic flow through contraction-expansion (or constriction)
pipe has been reported probably due to much higher
numerical obstacle present in the flow domain. Within
authors’ knowledge, computational results only for the
flow with rounded corners are currently available, and one
example can be found in the work by Szabo and coworkers
(1997).

In this work, we first complement the result for the flow
through 4:1 planar contraction presented by Kwon (2004)
employing finer spatial discretization. Then the viscoelastic
flow through 4:1:4 constriction is considered and we make
an attempt to verify difficulty that seems more intense than
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the complication in the contraction flow. All the results are
obtained in isothermal inertialess steady planar viscoelastic
flow. As a viscoelastic field equation the Leonov model is
chosen, of which the mathematical stability has been
proven (Kwon and Leonov, 1995) and the tensor-loga-
rithmic formulation in the 2D planar case is given in Kwon
(2004).

2. Equations in 2D planar flow
The differential viscoelastic constitutive equations

derived by Leonov (1976) can be written into the following
quite general form:

f;—Vv .e—c- Vv+2le(lgm(cz+%C—5):0,
T:G(%)nc’ W= 2(if1){(ll)m‘l} M

Here ¢ is the elastic Finger strain tensor that describes the
accumulated elastic strain in the Finger measure during
flow, v is the velocity, d—‘;— Z—j+v~Vc is the total time
derivative of ¢, V is the usual gradient operator in tensor
, ‘;, ~Vv'.c—¢- Vv is the upper convected time
derivative, G is the modulus and & is the relaxation time.
The tensor ¢ reduces to the unit tensor o in the rest state
and this condition also serves as the initial condition in the
start-up flow situation. In the asymptotic limit of 8->
where the material exhibits purely elastic behavior, it
becomes the total Finger strain tensor.

I,=trc and I, = tr¢”' are the basic first and second invari-
ants of ¢, respectively, and they coincide in planar flows.
Due to the characteristic of the Leonov model, the third
invariant /; satisfies specific incompressibility condition
such as I; =detc=1. In order to rigorously examine the
computational robustness of the formulation we do not
include any retardation (Newtonian viscous) term that
bestows stabilizing effect on the numerical scheme by aug-
menting the elliptic character in equations of motion. It is
well known that the computation without the Newtonian
term included in the set of equations becomes quite dif-
ficult and easily prone to numerical deterioration. In addi-
tion, its absence keeps fast explicit time-marching
algorithm for the evolution equations of ¢ from being
implemented. Thus the stress relation in Eq.(1) imposes
the most stringent condition upon the computation scheme,
and we have to apply a conventional Newton-Raphson
iteration solver to deal with nonlinear equations. The extra-
stress tensor is obtained from the elastic potential W based
on the Murnaghan’s relation. Since the extra-stress is
invariant under the addition of arbitrary isotropic terms,
when we present our numerical results we use =G

calculus

100

(%) (c-6) instead in order to set O for the stress in the rest

state. In addition to the linear viscoelastic parameters, it
contains 2 nonlinear constants m and n, which can be
determined from simple shear and uniaxial extensional
flow experiments. The value of the parameter m does not
have any effect on the flow characteristics in 2D situation,
since two invariants are identical.

The total set of equations in the finite element modeling
is composed of Eq.(1) and the following equations of
motion and continuity: :

~Vp+V-1+27,V-(e-€)=0, V-v=0. 2)

Here p is the pressure, e = —(Vv+ Vv') is the strain rate ten-

sor, and e is its unknown variable for the DEVSS (discrete
elastic-viscous split stress) implementation (Guénette and
Fortin, 1995). 7, is the parameter with the dimension of
viscosity for the DEVSS method, the value of which is set
to be identical with that of the zero-shear viscosity 7, = G&
and is raised to augment the stability of the numerical
scheme in a few cases.

The essential idea presented by Fattal and Kupferman
(2004) in reformulating the constitutive equations is the
tensor-logarithmic transformation of ¢ as follows:

= logc. 3)

Here the logarithm operates as the isotropic tensor func-
tion, which implies the identical set of principal axes for
both ¢ and A. In the case of the Leonov model, this A
becomes another measure of elastic strain, that is, twice the
Hencky elastic strain. While ¢ becomes J, k reduces to 0
in the rest state.

In the case of 2D planar flow, the final set of the Leonov
constitutive equations in the A-form has been obtained in
Kwon (2004) as follows:
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1 h
+ee 2h h12:0' (4)

Here h=./h,’+h,," is the eigenvalue of h. Actually the
total set of eigenvalues in this 2D flow are /4, —4 and 0.
Together with the equations of continuity and motion,
Eqgs.(4) constitute a complete set to describe isothermal
incompressible planar viscoelastic flow. However due to
the form presented in Eqs.(4), artificial numerical difficulty
may arise. In addition to the case of rest state, during flow
vanishing of the eigenvalue A (it means & = 0) may occur
locally, e.g. along the centerline in the fully developed Poi-
seuille flow through a straight pipe. Then the coefficients

of g—;)’ and 4; become apparently indeterminate. However
§
proper introduction of asymptotic relation for vanishing A

results in

8/’1“+ ah“ 8h“ 261)1 61)1 61)2

3t UGk TV, 2ar, Maay, Mgy, +9h“~0
My ah”+ f"” (- hloa“‘ A h) S+ ho,
ot ox,

when £~0. (5)

These Leonov equations contain one essential feature in
incompressible flows: detc=1. ©6)
In 2D it reduces to ¢, ;¢c;—cy;° = 1. This incompressibility
relation (6) in the notation of the A tensor becomes

trh = 0. (N

It gives another advantage in computation. For example, in
3D due to Ay, + hy + 33 = 0 one can eliminate one variable
(and accordingly one equation) from the set of governing
equations. In this 2D analysis, we remove h,, from the set,
and thus the viscoelastic constitutive equations add only 2
supplementary unknowns such as 4, and #,,. Based on our
numerical scheme explained afterwards, the computation
time has diminished to a half.

3. Numerical procedure

We first investigate planar 4:1 abrupt contraction flow
with centerline symmetry. The flow geometry and bound-
ary conditions are the same with those employed in Kwon
(2004) and again illustrated in Fig. 1. We also solve the
problem of planar 4:1:4 constriction or contraction/expan-
sion flow, the problem domain of which is shown in Fig.
2. For both problems, we apply no-slip boundary condition
at the wall 6Q; and specify symmetric natural boundary
on the centerline 0Q);. To remove indeterminacy of pres-
sure, we also set the pressure variable as 0 at the exit wall.
Fully developed flow conditions are applied for the veloc-
ity and A tensor at the inlet 8Q, but only for the velocity
at the outlet 6Q,.
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Fig. 1. Problem domain and boundary conditions of the 4:1 con-
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Fig. 2. Problem domain and boundary conditions of the 4:1:4
contraction/expansion flow problem.

When we denote the half width of the narrow channels as
H,, we set the length of the downstream channel as 15H,
and the length of the reservoir as 20H; for the contraction
flow. For the constriction flow, we set the lengths of both
entrance and exit pipes as 14.5H, and the length of con-
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striction as H, FEven though the downstream channel solve than that of the contraction flow, and later we present
length seems to be rather short to achieve fully developed an evidence of this simple conjecture.

flow especially for the contraction flow, in order to alle- With the standard Galerkin formulation adopted as basic
viate computational burden we simply choose this flow computational framework, streamline-upwind/Petrov-Galer-
geometry. kin (SUPG) method as well as discrete elastic viscous

Whereas the domain of the contraction flow contains stress splitting (DEVSS) algorithm is implemented in order
only 1 singular point, i.e. the contraction corner, there exits to build relatively robust numerical scheme at high Deb-
2 singular points in the constriction problem such as con- orah number flows. The upwinding algorithm developed
traction and expansion corners. Thus one can presume that by Gupta (1997) has been applied. The SUPG scheme is
the constriction flow problem may become much harder to consistent and endows a second order accuracy.
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Fig. 3. Partial view of the 5 meshes employed in the analysis of 4:1 contraction flow. (a) Mesh-A1, (b) Mesh-A2, (c) Mesh-A3, (d)
Mesh-A4, (e) Mesh-AS.
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Table 1. Characteristics of the 5 meshes employed for the analysis of 4

No. of

No. of No. of
quadratic nodes unknowns

linear nodes

No. of
clements

Length of the side of

the smallest element

37,000
74,712
110,080
178,432
267,044

7,330
14,843
21,906
35,536
53,234

1,920
3,835

3,491

0.1H,
0.05H,
0.05H,
0.02H,
0.02H,

Mesh-Al
Mesh-A2
Mesh-A3
Mesh-A4
Mesh-A5

7,174
10,679
17,393
26,181

5,614

9,072
13,527
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Table 2. Characteristics of the 5 meshes employed for the analysis of 4:1:4 contraction/expansion flow

Length of the side of No. of No. of No. of No. of

the smallest element elements linear nodes quadratic nodes unknowns
Mesh-B1 0.1H, 4,262 2277 8,815 44,368
Mesh-B2 0.05H, 12,254 6,377 25,007 125,536
Mesh-B3 0.025H, 13,966 7,252 28,469 142,384
Mesh-B4 0.01H, 18,271 9,440 37,150 186,360
Mesh-B5 0.005H, 35,673 18,269 72,210 361,916

5 types of meshes are employed for the computation of
contraction and constriction flows, respectively, and they
are illustrated in Figs. 3 and 4. Corresponding mesh details
are given in Tables 1 and 2. Especially for Mesh-B4 and
Mesh-B35, the region of exit corner is spatially more refined
for detailed analysis of solutions near the corner, and the
reason of this asymmetric refinement will become clear
when we examine the solutions in the next section.

Linear for pressure and strain rate and quadratic inter-
polation for velocity and A-tensor are applied for spatial
continuation of the variables. In this work, we only con-
sider steady inertialess flow of the isothermal incompress-
ible liquid. In order to mimic dimensionless formulation,
we simply assign unit values for G and 6 and adjust the
Deborah number by the variation of the average flow rate.
The Deborah number in this contraction or constriction
flow is usually defined as

ue

De:m, ®)
where U is the average velocity of the liquid in the narrow
channel. Also n=0.1 is set to guarantee the mathematical
stability even in stress predefined flow history (Kwon and
Leonov, 1995) (e.g. in the situation where one assigns trac-
tion boundary conditions at the inlet and outlet).

In order to solve the large nonlinear system of equations
introduced, the Newton iteration is used in linearizing the
system. As an estimation measure to determine the solution
convergence, the L,, norm scaled with the maximum value in
the computational domain is employed. Hence when the vari-
ation of each nodal variable in the Newton iteration does not
exceed 107 of its value in the previous iteration, the algo-
rithm concludes that the converged solution is attained. For
the viscoelastic variables, we examine the relative error in
terms of the eigenvalue of the c-tensor. We have found that
this convergence criterion imposes less stringent condition on
the computational procedure, and it seems quite practical and
appropriate since we mainly observe the results in terms of
physically meaningful c-tensor or stress rather than A.

4. Results and discussion
The convergence limits in the scale of the Deborah num-

104

Table 3. Limit of convergence in Deborah number achievable for
each mesh types under the’ SUPG method in 4:1 con-
traction flow

Mesh-Al 132
Mesh-A2 193
Mesh-A3 “ 169
Mesh-A4 - 123
Mesh-AS 17

Table 4. Limit of convergence in Deborah number achievable for
each mesh types under the SUPG method in 4:1:4 con-
traction/expansion flow

Mesh-B1 17
Mesh-B2 26
Mesh-B3 23
Mesh-B4 16
Mesh-B5 >10

ber are listed in Table 3 for the contraction flow and in
Table 4 for the constriction flow, respectively. Both cases
exhibit initial increase and then slow decrease in the con-
vergence limit as the spatial discretization becomes refined.
From this observation, we may conclude that the numerical
scheme still deteriorates as the mesh becomes finer, which
may contradict the conclusion assumed in the paper
(Hulsen, 2004; Hulsen et al., 2005). However the fact that
involving no Newtonian term employed in this study
imposes very stringent condition in computation has to be
kept in mind. The formulation including the small Newto-
nian viscous stress significantly stabilize the process, even
though we do not report any result in this regard, and we can
obtain stable result at the Deborah number as high as several
hundreds for all 5 meshes in the contraction flow. We have
also found that due to intense nonlinearity present in the A-
formulation (4) the numerical convergence is quite sensitive
to the linearization procedure, and thus determination of
accurate convergence limit is rather difficult.

For the 4:1:4 constriction as well as the 4:1 contraction
flow, with the result herein we have not been able to reach
the ultimate limit of numerical convergence when the mesh
becomes extremely fine. If such a value exists, the numer-
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ical degradation may imply important physical meaning
such as real instability of any possible kind.

For the constriction flow modeling, the convergence
limit in the case of Mesh-B5 is not attained due to heavy
computational burden required for its verification. At least,
we can assert that the limit is higher than 10 in the Deborah
number. Especially for this mesh, the value of 7,=3.27, is
applied due to some difficulty in convergence, even though
1. = 1 is used for all the other computations. The effect of
the variation of 7, has been discussed in detail by Fan et
al. (1999). In this numerical study, we have found some
peculiar flow pattern near the expansion corner, and Mesh-
B5 is employed only to confirm this rather uncertain phe-
nomenon. The overall convergence limit is quite low in

Min: -11.2
Max: 3.21

comparison with the result for the contraction flow. Later,
the origin of this difficulty in numerical convergence will
be discussed. Irrespective of this rather low convergence
limit, the study may provide valuable information in vis-
coelastic fluid dynamics, since within authors’ knowledge
there exists no computational result on the abrupt con-
striction flow modeling. However one can find results on
the analysis of viscoelastic constriction flow with corner
rounding (Szabo et al., 1997).

Fig. 5 shows streamlines of the contraction flow at
De =100 for Mesh-Al, Mesh-A3 and Mesh-A5, respec-
tively, which exhibit large corner vortex. The overall
shapes are almost identical, which explains proper mesh
convergence in the solution. However one can observe

4

X
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Max: 2.26

~

'
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Fig. 6. Shear stress (z,) contourlines of 4:1 contraction flow at De =100 for (a) Mesh-Al, (b) Mesh-A3 and (c) Mesh-A5.
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-0.2 0.2

y(x=1)

Fig. 7. Stress profiles along the line of x = | in the 4:1 contraction
flow at De = 100: (a) the normal stress 7, in the flow
direction, (b) shear stress r,.
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slight increase of the vortex size: with mesh refinement and
this characteristic of the solution has been -already men-
tioned previously (Kwon, 2004). Fig. 6 illustrates shear
stress contour for the same meshes. High gradient of shear
stress near the corer can be noticed and quite stiff vari-
ation across the vortex boundary is also found.

In Fig. 7 the stress profiles are shown as functions of y
(the flow direction) at x =1 (scaled with H,). Thus at y =0
they change their domain from the liquid to the solid wall,
and the position in 0 <y means the location at the down-
stream wall. The sharp variation of stresses clearly dem-
onstrates singular behavior of the solutions incurred by the
contraction corner. Here we do not observe fluctuation of
stress variables along the wall, which have been frequently
examined in many publications. This disappearance of
numerical artifacts seems to result from the upwinding
employed in the computational algorithm. We can examine
tendency that the peaks of the stress variables near the cor-
ner (y ~ 0) become sharper as the mesh becomes finer, and
it again suggests appropriate mesh convergence of the
solutions.

In the case of finest spatial discretization (Mesh-A5), the
normal stresses and the elastic potential have been depicted
in Fig. 8. Again one can explicitly see high solution gra-
dient near the corner. In addition, along the centerline grad-
ual increase of the normal stress (7,) and elastic potential
up to the contraction is also observed, which implies strong
extensional deformation of the fluid element in this con-
traction flow. In the region of vortex, the variation of solu-
tions is rather weak. Fig. 8c specifically illustrates
accumulation of the elastic energy near contraction that is
partially relaxed along the downstream channel.

Fig. 9 shows streamlines of the constriction flow at

Min: -1.32
Max:

=000

134

Fig. 8. Normal stress contourlines (a) in the transverse direction (z.), (b) in the flow direction (z,) and (c) elastic potential W of 4:1

contraction flow at De= 100 for Mesh-AS.

106

Korea-Australia Rheology Journal



Finite element analysis of viscoelastic flows in a domain with geometric singularities
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Fig. 9. Streamlines of 4:1:4 constriction flow at De=10 for (a) Mesh-Bl1, (b) Mesh-B3 and (¢) Mesh-BS5.

De =10 for Mesh-B1, Mesh-B3 and Mesh-BS5, respec-
tively, which exhibit large entrance (upstream) corner vor-
tex but small expansion (downstream) corner vortex. One
can hardly notice the difference among the solutions of dif-
ferent meshes and thus Fig. 9 indirectly proves proper

[.
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i

20 4 | ===- Mesh-B3

i
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]
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TXX
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64| ——— Mesh-B5 ;i
1
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Txy iy

-1.0 -0.5 0.0 0.5 1.0
y(x=1)

mesh convergence with spatial discretization. In all 3 fig-
ures, one can find peculiar streamline deflection near the
expansion corner. Such deflection seems to be caused by
sudden elastic expansion of the liquid at the exit of the nar-
row channel and it will be further examined in detail later.
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Fig. 10. Variation of the variables along the line of x =1 in the 4:1:4 constriction flow at De = 10: (a) the normal stress 7, in the trans-
verse direction, (b) the normal stress 7, in the flow direction, (c) shear stress z, and (d) the elastic potential W.
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The viscoelastic model, Eq.(1) employed in this compu-
tation allows instantaneous elastic response due to the
absence of the Newtonian viscous term, and thus we can
expect abrupt relaxation of the accumulated elastic energy
near expansion. :

In Fig. 10 the stress and elastic potential profiles are
shown as functions of y (the flow direction) at x = 1 (scaled
with Hy). Thus they change their domain from the liquid to
the solid wall at y=-0.5 and from the solid wall to the liquid
at y=0.5, and thus the point in —0.5 <y <0.5 means the
location at the constriction channel wall. The sharp vari-
ation of solutions at y = £0.5 clearly demonstrates singular
behavior of the solutions incurred by the corners. Espe-
cially for z,, and W, the singular behavior is more intense
at the exit corner than that at the entrance corner, which
explains severer difficulty present in the constriction flow
modeling than in the contraction flow computation. Hence
when we search for the convergence limit in these con-
traction and constriction flow geometries, this difficulty
may induce earlier numerical failure in the constriction
flow when the result is interpreted with the measure of the
Deborah number. We again examine the tendency that the
peaks of the stress variables near the corners (y=+0.5)
become sharper as the mesh becomes finer, and it suggests
appropriate mesh convergence of the solutions.

Fig. 11 shows dependence of the streamlines on the flow
rate in the neighborhood of the constriction channel for
Mesh-B3. In the case of low Deborah number (Fig. 11a),
the streamlines in the upstream and the downstream exhibit
almost symmetric pattern that corresponds to the linear vis-
coelastic behavior of the equations. However when the
flow rate becomes high (De > 1), nonlinearity present in
the set of equations dominates, and thus the symmetry
breaks. As a result, the vortex size in the downstream
decreases whereas that in the upstream increases. The sim-
ilar dependence of the vortex size on the flow rate has been
already obtained by Szabo er al. (1997) for the flow
through a constriction tube with corner rounding. Evidently
the increase of the upstream vortex size with the flow rate

3

~

[

results from the same origin with the case of the con-
traction flow. However elastic recovery of the liquid
through sudden expansion similar to the phenomenon in
extrudate swelling is thought to result in the decrease of the
downstream vortices with the increase of the Deborah
number. In other words, when the flow rate is high, the
accumulated elastic deformation is large which abruptly
relaxes at the exit of constriction, and thus expansion of the
liquid due to the relaxation of elastic deformation sup-
presses the downstream vortex. One can also find deflec-
tion of streamlines near the expansion corner when the
Deborah number becomes higher than 1.

In the case of finest spatial discretization (Mesh-B5), the
normal and shear stresses and the elastic potential have
been depicted in Fig. 12. Again one can explicitly see high
solution gradient near the corners. However the singularity
effect of the expansion corner is much greater than that of
the contraction corner. Immediately after the exit of con-
striction channel, all the viscoelastic variables suddenly
relax almost completely. From this we can conclude that
numerical interpolation of viscoelastic flow variables near
the expansion is much harder than that near the contrac-
tion, and this presents another evidence for lower con-
vergence limit in the case of constriction flow modeling.

In order to examine more carefully the flow behavior
near the expansion corner, Fig. 13 presents enlarged view
of the domain with streamlines for 3 types of spatial dis-
cretization such as Mesh-B3, Mesh-B4 and Mesh-BS. In
the case of Mesh-B3 where the finest corner element has
0.025H, as its side length, only the streamlines almost par-
allel to the wall are observed. However when the flow
domain becomes more finely discretized (Fig. 13b-c), we
see occurrence of small lip vortex just before the exit to
expansion, which seems to be responsible for the deflec-
tion of streamlines near the exit corner. It is worthwhile to
emphasize once more that this type of lip vortex can be
numerically obtained only when the spatial discretization is
fine enough, and it becomes more distinct when the mesh
is more refined. Whereas the occurrence of the lip vortex
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Fig. 11. Streamlines of 4:1:4 constriction flow for Mesh-BS5 at (a) De=0.2, (b) De=2 and (c) De= 10.
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Fig. 12. Contourlines of normal stresses (a) in the transverse direction (z,) and (b) in the flow direction (z,), (c) shear stress (z,) and
(d) elastic potential (W) of 4:1:4 constriction flow at De=10 for Mesh-BS.
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Fig. 13. Streamlines of 4:1:4 constriction flow at De =10 near the exit comer for (a) Mesh-B3, (b) Mesh-B4 and (c) Mesh-BS.

actually makes narrower the width of the channel near the
constriction exit, it plays a role similar to the corner round-
ing and thus smoothens bending of the streamlines at the
exit corner.

Before concluding this chapter, we make a remark on the
accuracy issue regarding the employment of logarithmic
variables instead of original viscoelastic variables. At first
sight, one may consider that numerical interpolation of the
logarithmically transformed variables brings about loss of
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accuracy, since the logarithmic transform converts the
exponential scale into the linear one. However it actually
preserves consistency in the numerical interpolation. To
illustrate this, we only consider the simple case of 2D pla-
nar situation with the Leonov model. In this case, when we
denote the first unknown eigenvalue of the ¢ tensor as c,
the second one becomes 1/c, since both the third eigen-
value and the determinant of ¢ are unit. Thus the domain
of (0, 1] is exactly equivalent to the domain of [1, ©°) from
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the viewpoint of eigenvalues of ¢. Therefore the direct
interpolation of the ¢ tensor variables by polynomials pro-
vides insufficient accuracy in (0, 1], even though it gives
highly accurate approximation in [1, ©). However the log-
arithmic transform converts the domain of (0, 1] into (-2, 0]
and [1, °©) into [0, ©°). Thus only the logarithmically
transformed variables can be- interpolated equivalently in
the whole domain. As a result, the tensor-logarithmic for-
mulation provides consistent and equivalent numerical
interpolation of the viscoelastic variables in their whole
domain in addition to the advantage that it preserves the
positive-definiteness of the configuration tensor.

6. Conclusions

In this work, planar 4:1 contraction and 4:1:4 contrac-
tion/expansion viscoelastic flows are analyzed in terms of
finite element method with tensor-logarithmic formulation
of the configuration tensor implemented. The isothermal
incompressible creeping viscoelastic flows with the
Leonov model are considered. We have obtained solutions
over the Deborah number of 100 for the contraction flow
and over 10 for the constriction flow. In both cases, there
seems to exist slight decrease of convergence limit as the
mesh becomes finer. From this analysis, singular behavior
of the sharp corners has been clearly demonstrated and
proper interpolation of variables in terms of the logarithmic
transformation is explained. In the case of the constriction
flow, the exit corner imposes much severer singularity than
the entrance corner. In addition, the upstream vortex
increases but the downstream vortex decreases in their size
as the flow rate increases. When the spatial resolution is
fine enough and the Deborah number is high, the deflec-
tion of the streamlines just before the constriction exit is
found, and small lip vortex has been observed. This small
vortex seems to occur due to abrupt expansion of the elas-
tic liquid through the constriction exit that accompanies
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sudden relaxation of elastic deformation.
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