• Title/Summary/Keyword: Inclined angle

Search Result 522, Processing Time 0.025 seconds

Determination of inclination of strut and shear strength using variable angle truss model for shear-critical RC beams

  • Li, Bing;Tran, Cao Thanh Ngoc
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.459-477
    • /
    • 2012
  • This paper attempts to determine the inclination of the compression strut within variable angle truss models for RC beams loaded in shear-flexure through a proposed semi-analytical approach. A truss unit is used to analyze a reinforced concrete beam, by the principle of virtual work under the truss analogy. The inclination of the compression strut is then theoretically derived. The concrete contribution is addressed by utilizing the compatibility condition within each truss unit. Comparisons are made between the predicted and published experimental results of the seventy one RC beams with respect to the shear strength and the inclined angle of the compression strut at this state to investigate the adequacy of the proposed semi-analytical approach.

Study on the performance of transportation using the screw-feeder in lifting system (양광시스템내 스크류피더 이송성능에 관한 연구)

  • Kim, Young-Ju;Han, Sang-Mok;Hwang, Young-Kyu;Yoon, Chi-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2574-2577
    • /
    • 2008
  • The screw-feeders are used at gathering the minerals at the seafloor, transportation of the sewage, and at the beverage industry. This study was carried out to study solid-liquid mixture hydraulic transport of solid particles in a horizontal and inclined screw-feeders with rotating. This study is about the amount of the alteration amount of the material transportation for regular transportation. In this study a clear acrylic pipe was used in order to observe the movement of solid particles. Relates to the angle, rpm and ratio of pitch ; finding the optimum condition and knowing about designing the screw feeders shape. As a result, we found the suitable rpm and a suitable angle. According to the experiment, the best rpm and angle are 100-200rpm and $10^{\circ}$, respectively.

  • PDF

The Relation of Bending Buckling Strength in Vehicle and Three Point Bending Maximum Strength of Door Impact Beam (도어 임팩트 빔의 3점 굽힘 최대강도와 차량 장착 시 굽힘 좌굴강도와의 관계)

  • Kang, Sungjong;Lee, Sangmin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.1
    • /
    • pp.40-47
    • /
    • 2019
  • First, three point bending analysis for the inclined press door impact beam was carried out to investigate inclination angle effect on the maximum strength with varying support distance. Next, for the system model with spring elements representing body stiffness at door mounting area, the bending structural behavior of impact beam mounted on vehicle was estimated. The mounting distance and inclination angle were changed and the beam bending buckling strength was presumed at the head displacement below which spring stiffness change has little effect on the load. Finally strength ratio to predict the bending buckling strength of impact beam mounted on vehicle from three point bending maximum strength of fixed support distance was suggested.

A Study on the Slacks Pattern Making according to the Movement-Fitness [Part II] -On the Hip Region- (동작적합성에 따른 Slacks Pattern 설계에 관한 연구[Part II] -엉덩이 부위를 중심으로-)

  • 박영득
    • Journal of the Korean Home Economics Association
    • /
    • v.35 no.4
    • /
    • pp.159-172
    • /
    • 1997
  • The purpose of this study was to investigate the slacks pattern making on the movement -fitness of the hip region. The experimental items were divided into the 5 lower limb movements(M1-M5) and the 12 revision pattern constructions of slacks. This study was done by clothing pressure test sensory evaluation test and the difference shape-transformation of wearing-slacks. The summarized finding resulted from experiments and investigation are suggested as follows: First by the clothing pressure tested by lower limb movements the clothing pressure score of the rabbit leap movement(M3) was the highest of all lower limb movements and the order of it in the another movement was the sit on knee(M4) the sit on chair(M2) the noble sitting(M5) from the highest to the lowest. And in comparision of clothing pressure tested by revision pattern to cover the extend of crotch-length 20。 inclined back-line construction method (CA4) showed the lowest. And in comparision of clothing pressure tested by revision pattern to cover the extend of crotch-length 20。 inclined back-line construction method (CA4) showed the lowest. And also for a role to cover hip circumference extendign CC4(1/5 hip.1cm longrightarrow linked back -line) method showed the lowest. Second by the sensory evaluation test based on the movement and revision patterns it was found that the functional factor score of the rabbit leap movement was the lowest in all movement however the score of revision patterns were higher than basic pattern. Third by the test to show difference in the shape-transformation of wearing-slacks on chair(M2) also need to be analyzed. The ration of the shape-transformation of the knee region showed the least value in the increased patterns of inclined angle of back-line(CA) and the differential methods of back-line inclined pattern making. But that of the hem-line did not show remarkable difference.

  • PDF

A Study on the Effects of Fin Length on Natural Convection Heat Transfer from a Inclined Flat Plate (경사평판에서의 핀길이가 자연대류 열전달에 미치는 영향에 관한 연구)

  • 천대희
    • Fire Science and Engineering
    • /
    • v.12 no.1
    • /
    • pp.3-8
    • /
    • 1998
  • This study has been conducted experimentally on the effects of natural convection heat transfer characteristics for inclined flat plate with vertical fin in air. The effects of various fin length, flat plate inclined angle and Grashof number are mainly investigated The experimented results are as follows: The mean heat transfer coefficient increase according to the decrease of H/S in the various fin lengh. The mean heat transfer coefficient at H/S-0.5, 1.0, 1.5 for Gr=2.11$\times$103. $\theta$=00 increase by 107%, 43%, 15% than H/S=2.0. The mean heat transfer coefficient decrease with the increase of $\theta$ the inclined angles. The mean heat transfer coefficient at Gr=2.97$\times$103 is constant, at $\theta$= 00 for H/S=0.5 decrease by 33% than $\theta$=90$^{\circ}$. The mean heat transfer coefficient increase as Grashof as Grashof number increase. The mean heat transfer coefficient at Gr=2.31$\times$103, Gr=2.61$\times$103, Gr=2.97$\times$103 for H/S=1.0, $\theta$=0$^{\circ}$increase by 9%, 16%, 28% than Gr=2.11$\times$103.

  • PDF

The Boundary Element Analysis of Waves coming with Oblique Angle to a Submerged Breakwater (잠제에 경사로 입사하는 파랑의 경계요소 해석)

  • Kim, Nam Hyeong;Woo, Su Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5B
    • /
    • pp.295-300
    • /
    • 2012
  • Reflection coefficients of wave due to the types of a submerged breakwater on the inclined incident wave are numerically computed by using boundary element method. The analysis method is based on the wave pressure function with the continuity in the analytical region including fluid and structures. When compared with the existing results on the inclined incident wave, the results of this study show good agreement. It is found that both maximum and minimum values of the reflection coefficient are appeared frequently, as the width of a submerged breakwater becomes wider, and the reflection coefficient increase, as the wave period is longer. In addition, the effect on the reflection coefficient due to the change of submerged breakwater hight is lager than that due to the change of submerged breakwater width. The results indicate that dissipating characteristics of wave due to the types of a submerged breakwater own high dependability regarding the change of inclined incident waves. Therefore, the results of this study is estimated to be applied as an accurate numerical analysis referring to inclined incident waves in real sea.

A Study on the Solidification and Purification of High Purity Aluminium Alternate Stirring Method (정역 회전법에 의한 고순도 알루미늄의 응고 및 정련에 관한 연구)

  • Kim, Wook;Lee, Joung-Ki;Baik, Hong-Koo;Heo, Seong-Gang
    • Journal of Korea Foundry Society
    • /
    • v.12 no.3
    • /
    • pp.220-229
    • /
    • 1992
  • The degree of purification and the macrostructure of high purity aluminium were studied through the alternate stirring method in order to improve the nonuniformity of solute concentration in the unidirectional stirring method. The $2^3$ factorial design was done to examine the effects of experimental factors more qualitatively. In the relatively low stirring speed of 1500 rpm with alternate stirring mode, the uniform solute profile and refined grain structure were obtained due to strong washing effect and turbulent fluid flow. It was induced by the transition of the momentum boundary layer by alternation of the stirrer. It was concluded from this study that the alternate stirring mode was more effective to obtain the uniformity of solute even in the stirring speed of 1500 rpm. But the degree of purification decreased below the critical alternating period. When 2N(99.8wt.%) aluminium was used as the starting material the morphology of solid-liquid showed the cellular shape and the columnar grains were inclined to the direction of rotation. This inclined grain growth resulted from the difference of relative velocities of solid and liquid. The inclined angle was increased as the stirring speed increased and solidification proceeded. In the case of 4N aluminium, there was no inclined grain growth and it was confirmed from the macrostructure and SEM work that the morphology of solid-liquid interface was planar. From the factorial design, it was found that the alternate stirring mode showed poorer purification effect than that of unidirectional stirring mode at low speed(500 rpm). In addition, the factor that had the most significant effect on the degree of purification was the stirring speed.

  • PDF

A Study on Tunnel Loads in an Unconsolidated Ground with Inclined Layers (지층이 경사진 미고결 층상지반에서의 터널 작용토압에 관한 연구)

  • Park, Si Hyun;Kim, Young Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.275-282
    • /
    • 2006
  • Since tunnels are linear type structures that have a long extent in comparison to their excavation or inner section, tunnels must be constructed in various ground conditions. In this study, laboratory model tests and theoretical analysis on a tunnel loads are carried out in the unconsolidated ground with inclined layers for tunnel excavation. Laboratory model tests are performed with the variation in the angle of the inclined layers and tunnel depth for the model ground with inclined layers. As for the ground materials, two dimensional model ground is prepared with aluminum rods and blocks with no cohesion, which are frictional resistance free between testing apparatus walls and ground materials, by establishing the ground materials self-supporting. Moreover tunnel load equation are newly induced so that comparisons between model test results and the theoretical results are conducted as well.

Reinforcement layout design for deep beam based on BESO of multi-level reinforcement diameter under discrete model

  • Zhang, Hu-zhi;Luo, Peng;Yuan, Jian;Huang, Yao-sen;Liu, Jia-dong
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.547-560
    • /
    • 2022
  • By presetting various reinforcement diameters in topology optimization with the discrete model finite element analysis, an algorithm of bidirectional evolutionary structural optimization of multi-level reinforcement diameter is presented to obtain the optimal reinforcement topologies which describe the degree of stress of different parts. The results of a comparative study on different reinforcement feasible domain demonstrate that the more angle types of reinforcement are arranged in the initial domain, the higher utilization rate of reinforcement of the optimal topology becomes. According to the nonlinear finite element analysis of some deep beam examples, the ones designed with the optimization results have a certain advantage in ultimate bearing capacity, although their failure modes are greatly affected by the reinforcement feasible domain. Furthermore, the bearing capacity can be improved when constructional reinforcements are added in the subsequent design. However the adding would change the relative magnitude of the bearing capacity between the normal and inclined section, or the relative magnitude between the flexural and shear capacity within the inclined section, which affects the failure modes of components. Meanwhile, the adding would reduce the deformation capacity of the components as well. It is suggested that the inclined reinforcement and the constructional reinforcement should be added properly to ensure a desired ductile failure mode for components.

Passenger evacuation simulation considering the heeling angle change during sinking

  • Kim, Hyuncheol;Roh, Myung-Il;Han, Soonhung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.329-343
    • /
    • 2019
  • In order to simulate the evacuation simulation of a ship during a sinking, the slope angle change of the ship must be reflected during the simulation. In this study, the passenger evacuation simulation is implemented by continuously applying the heeling angle change during sinking. To reflect crowd behavior, the human density and the congestion algorithm were developed in this research and the walking speed experiment in the special situation occurring in the inclined ship was conducted. Evacuation simulation was carried out by applying the experimental results and the change of the walking speed according to the heeling angle of the ship. In order to verify the evacuation simulation, test items suggested by International Maritime Organization (IMO) and SAFEGUARD Validation Data Set conducted on a large Ro-PAX ferry (SGVDS 1) which performed real evacuation trial in full-scale ships were performed and the results of simulation were analyzed. Based on hypothetical scenario of when a normal evacuation command is delivered to the passengers of MV SEWOL in time, we predicted and analyzed the evacuation process and the number of casualties.