• Title/Summary/Keyword: Incident energy

Search Result 681, Processing Time 0.031 seconds

Performance of Northern Exposure Index in Reducing Estimation Error for Daily Maximum Temperature over a Rugged Terrain (북향개방지수가 복잡지형의 일 최고기온 추정오차 저감에 미치는 영향)

  • Chung, U-Ran;Lee, Kwang-Hoe;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.195-202
    • /
    • 2007
  • The normalized difference in incident solar energy between a target surface and a level surface (overheating index, OHI) is useful in eliminating estimation error of site-specific maximum temperature in complex terrain. Due to the complexity in its calculation, however, an empirical proxy variable called northern exposure index (NEI) which combines slope and aspect has been used to estimate OHI based on empirical relationships between the two. An experiment with real-world landscape and temperature data was carried out to evaluate performance of the NEI - derived OHI (N-OHI) in reduction of spatial interpolation error for daily maximum temperature compared with that by the original OHI. We collected daily maximum temperature data from 7 sites in a mountainous watershed with a $149 km^2$ area and a 795m elevation range ($651{\sim}1,445m$) in Pyongchang, Kangwon province. Northern exposure index was calculated for the entire 166,050 grid cells constituting the watershed based on a 30-m digital elevation model. Daily OHI was calculated for the same watershed ana regressed to the variation of NEI. The regression equations were used to estimate N-OHI for 15th of each month. Deviations in daily maximum temperature at 7 sites from those measured at the nearby synoptic station were calculated from June 2006 to February 2007 and regressed to the N-OHI. The same procedure was repeated with the original OHI values. The ratio sum of square errors contributable by the N-OHI were 0.46 (winter), 0.24 (fall), and 0.01 (summer), while those by the original OHI were 0.52, 0.37 and 0.15, respectively.

Design and Performance Analysis of Conical Solar Concentrator

  • Na, Mun Soo;Hwang, Joon Yeal;Hwang, Seong Geun;Lee, Joo Hee;Lee, Gwi Hyun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.21-29
    • /
    • 2018
  • Purpose: The objective of this study is to evaluate the performance of the conical solar concentrator (CSC) system, whose design is focused on increasing its collecting efficiency by determining the optimal conical angle through a theoretical study. Methods: The design and thermal performance analysis of a solar concentrator system based on a $45^{\circ}$ conical concentrator were conducted utilizing different mass flow rates. For an accurate comparison of these flow rates, three equivalent systems were tested under the same operating conditions, such as the incident direct solar radiation, and ambient and inlet temperatures. In order to minimize heat loss, the optimal double tube absorber length was selected by considering the law of reflection. A series of experiments utilizing water as operating fluid and two-axis solar tracking systems were performed under a clear or cloudless sky. Results: The analysis results of the CSC system according to varying mass flow rates showed that the collecting efficiency tended to increase as the flow rate increased. However, the collecting efficiency decreased as the flow rate increased beyond the optimal value. In order to optimize the collecting efficiency, the conical angle, which is a design factor of CSC, was selected to be $45^{\circ}$ because its use theoretically yielded a low heat loss. The collecting efficiency was observed to be lowest at 0.03 kg/s and highest at 0.06 kg/s. All efficiencies were reduced over time because of variations in ambient and inlet temperatures throughout the day. The maximum efficiency calculated at an optimum flow rate of 0.06 kg/s was 85%, which is higher than those of the other flow rates. Conclusions: It was reasonable to set the conical angle and mass flow rate to achieve the maximum CSC system efficiency in this study at $45^{\circ}$ and 0.06 kg/s, respectively.

Variation of Harbor Response due to Construction of A New Port in Youngil Bay (영일만 신항 건설에 따른 항만 정온도의 변화)

  • Lee, Hoon;Lee, Hak-Seung;Yang, Sang-Yong;Lee, Joong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.179-186
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Pohang Old Harbor and Pohang New Port, etc. due to construction of New Port in Youngil Bay. This type of trial might be a milestone for port development in macroscale, where the induced impact analysis in the existing port due to the developemnt could be easily neglected.

  • PDF

Formation of Passivation Layer and Its Effect on the Defect Generation during Trench Etching (트렌티 식각시 식각 방지막의 형성과 이들이 결함 생성에 미치는 영향)

  • Lee, Ju-Wook;Kim, Sang-Gi;Kim, Jong-Dae;Koo, Jin-Gon;Lee, Jeong-Yong;Nam, Kee-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.634-640
    • /
    • 1998
  • A well- shaped trench was investigated in view of the defect distribution along trench sidewall and bottom using high resolution transmission electron microscopy. The trench was formed by HBr plasma and additive gases in magnetically enhanced reactive ion etching system. Adding $0_2$ and other additive gases into HBr plasma makes it possible to eliminate sidewall undercut and lower surface roughness by forming the passivation layer of lateral etching, resulted in the well filled trench with oxide and polysilicon by subsequent deposition. The passivation layer of lateral etching was mainly composed of $SiO_xF_y$ $SiO_xBr_y$ confirmed by chemical analysis. It also affects the generation and distribution of lattice defects. Most of etch induced defects were found in the edge region of the trench bottom within the depth of 10$\AA$. They are generally decreased with the thickness of residue layer and almost disappeared below the uni¬formly thick residue layer. While the formation of crystalline defects in silicon substrate mainly depends on the incident angle and energy of etch species, the region of surface defects on the thickness of residue layer formed during trench etching.

  • PDF

Ultrasonic Wave Propagation Analysis for Damage Detection in Heterogeneous Concrete Materials (콘크리트 내부결함 탐지를 위한 초음파 전파 해석)

  • Jung, Hwee Kwon;Rhee, Inkyu;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.225-235
    • /
    • 2020
  • Ultrasonic investigation of damage detection has been widely used for non-destructive testing of various concrete structures. This study focuses on damage detection analysis with the aid of wave propagation in two-phase composite concrete with aggregate (inclusion) and mortar (matrix). To fabricate a realistic simulation model containing a variety of irregular aggregate shapes, the mesh generation technique using an image processing technique was proposed. Initially, the domains and boundaries of the aggregates were extracted from the digital image of a typical concrete cut-section. This enables two different domains: aggregates and mortar in heterogeneous concrete sections, and applied the grids onto these domains to discretize the model. Subsequently, finite element meshes are generated in terms of spatial and temporal requirements of the model size. For improved analysis results, all meshes are designed to be quadrilateral type, and an additional process is conducted to improve the mesh quality. With this simulation model, wave propagation analyses were conducted with a central frequency of 75 kHz of the Mexican hat incident wave. Several void damages, such as needle-shaped cracks and void-shaped holes, were artificially introduced in the model. Finally, various formats of internal damage were detected by implementing energy mapping based signal processing.

A Study on Dose Distribution using Virtual Wedge in Breast Cancer (유방암 환자에서 가상 쐐기모양 보상체의 선량분포 특성에 대한 연구)

  • Yun, Sang-Mo;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • In the radiation therapy for breast cancer patients, wedge shaped compensators are essentially used to achieve appropriate dose distribution because of thickness difference according to breast shapes. Tangential Irradiation technique has usually been applied to radiation therapy for breast cancer patients treated with breast conservative surgery. When a primary beam is incident on wedge shaped compensators from medial direction In tangential irradiation technique, low energy scattered radiation is generated and gives additional dose to the breast surface. As a method to reduced additional dose to breast surface, the use of virtual wedge shaped compensator is possible. Eclipse radiation treatment planning (RTP) systems Installed at our institution have virtual wedge shaped compensator for radiation therapy treatment planning. The dose distributions of 15, 30, 45, 60 degree physical wedges and virtual wedges were measured and compared. Results showed that there was no significant differences In symmetry of $10{\times}10$ field among various wedge angles. When the transmission factor was compared, transmission factor Increased linearly as the wedge angle Increased. These results Indicates that the appilcation of virtual wedge in clinical use is appropriate.

  • PDF

Etch Characteristics of CoTb and CoZrNb Thin Films by High Density Plasma Etching (고밀도 플라즈마 식각에 의한 CoTb과 CoZrNb 박막의 식각 특성)

  • Shin, Byul;Park, Ik Hyun;Chung, Chee Won
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.531-536
    • /
    • 2005
  • Inductively coupled plasma reactive ion etching of CoTb and CoZrNb magnetic materials with the photoresist mask was performed using $Cl_2/Ar$ and $C_2F_6/Ar$ gas mixtures and characterized in terms of etch rate and etch profile. As the concentrations of $Cl_2$ and $C_2F_6$ gases increased, the etch rates of magnetic films decreased and the etch slopes became slanted. The $Cl_2/Ar$ gas was more effective in obtaining fast etch rate and steep sidewall slope than the $C_2F_6/Ar$ gas. As the coil rf power and dc bias increased, fast etch rate and steep etch slope were obtained but the redeposition on the sidewall was observed. This is due to the increase of ion and radical densities in plasma with increasing the coil rf power and the increase of incident ion energy to the substrate with increasing the dc bias voltage. By applying high density reactive ion etching to magnetic tunnel junction stack containing various magnetic films and metal oxide, steep etch slope and clean etch profile without redeposition were obtained.

Characteristics of Second Harmonic Generation in $LiB_3O_5 $ Crystals Grown by TSSG Method (TSSG 법으로 육성한 $LiB_3O_5 $ 단결정의 제2조화파 발생 특성)

  • 권택용;오학태;주정진;백현호;김정남;윤수인
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.74-79
    • /
    • 1994
  • The characteristics of the type I and type II SHG in LiB305 crystals grown by TSSG method have been investigated using 1064 nm beam from a Q-switched Nd:YAG laser. The measured phase matching angles and angular acceptance bandwidths were $\theta_m=90^{\circ}, \phi_m=11.6^{\circ}$, <$\delta\theta_{int}L_{1/2}=3.3^{\circ}-cm^{1/2}, \theta\phi_{int}L=0.27^{\circ}-cm^{1/2}$ for type I SHG and $\theta_m=20^{\circ}, \phi_m=90^{\circ}$, TEX>$\delta\theta_{int}L_=0.65^{\circ}-cm, \theta\phi_{int}L^{1/2}=3.5^{\circ}-cm^{1/2}$ for type II SHG, respectively. Thp. type I NCPM temperature of 1064 nm beam was found to be $149^{\circ}C$ with the temperature bandwidth $\DeltaTL$of $4.8^{\circ}C-cm$. An energy conversion efficiency of about 1.8% with 2.6 mm thick LBO crystal at an incident power of TEX>$171 MW/\textrm{cm}^2$ was demonstrated. The measured $d_{32} was 0.74\pm0.05 pm/V$..

  • PDF

Measurement of neutron spectra in MC50 cyclotron using Bonner sphere spectrometer with LiI scintillation detector (LiI 섬광검출기 기반의 보너구 스펙트로메터를 이용한 MC50 사이클로트론의 중성자스펙트럼 측정)

  • Ha, Wi-Ho;Park, Seyoung;Yoo, Jaeryong;Yoon, Seokwon;Lee, Seung-Sook;Kim, Jungho;Kim, Jong Kyoung
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.3
    • /
    • pp.143-148
    • /
    • 2013
  • Operational nuclear facilities such as nuclear power plants and particle accelerators show various neutron spectra according to the type of facilities and specific position. Necessities of neutron dose management and neutron monitoring for radiation protection of radiation workers in such a kind of facilities have continuously increased in recent years. Bonner sphere spectrometers are widely used for measurement of neutron spectra. Data on response function of neutron detector, default neutron spectra and count rates of Bonner sphere spectrometer are required to obtain unfolded neutron spectra in specific workplaces. In this study, we carried out measurement of neutron spectra produced in MC50 cyclotron using Bonner sphere spectrometer with LiI scintillation detector. Additionally, we estimated quantitative data on neutron flux, mean neutron energy and ambient dose equivalent rate according to the incident proton energies and positions in MC50 cyclotron.

Study on Compass, Carpenter's square, The Beam of Balance and the Weight of balance[規矩權衡] in "Somun(素問).Maekyojeongmiron(脈要精微論)" ("소문(素問).맥요정미론(脈要精微論)"의 규구충권(規矩衡權)에 대한 연구)

  • Lee, Hye-Yeon;Kang, Jung-Soo
    • Journal of Korean Medical classics
    • /
    • v.23 no.1
    • /
    • pp.101-114
    • /
    • 2010
  • In the perspective of the correspondence of heaven and man[天人相應], people live through Gi of heaven and earth[天地之氣], and the human body which is a small universe[小宇宙] itself receives influence while sympathizing with the Gi and heaven[天氣]. So with unexpected incident of the Eum and Yang, four season[陰陽四時], ups and downs of warmth of cold and chilliness of warm[寒熱溫涼] differs, and the position of Gi of human[人氣] changes, regimen and application of acupuncture, and images[象] of the pulse changes. In "Maekyojeongmiron(脈要精微論)", ups and downs of Eum and Yang changes by four season[四時], and correspondence of ups and downs of pulse law is explained with compass, carpenter's square, the beam of balance and the weight of balance[規矩權衡]. Compass[規] is a measure of instrument that can draw a circle, like regulating the measure and differing the center of the circle and diameter and drawing a circle, compass is a image of Gi of Yang[陽氣] that was staying deep inside the body in winter stretching out by big fault[太過不及] of year and energy[元氣] of human in spring. Carpenter's square[矩] is a instrument that draws direction, which is a image of Gi of Yang flourishing in summer and when it gets highly flourished, again the Gi of Eum[陰氣] comes alive and falls. The beam of balance[衡] is a scale, like a scale that tilts at once when one side is slightly heavy, the beam of balance is a image Gi of yang that is fully flourished in summer and about to descent again, which is just about to fall but not going down yet. The weight of balance [權] is a image of gi of yang which as descent to the bottom and staying in the deepest place. compass, carpenter's square, the beam of balance and the weight of balance is not a direct pulse image[脈象], but standard image of pulse of pulse corresponding to the Gi of human[人氣] that changes by four season, and the explanation includes the pulse image of four season like the taut, full, floating, deeply gather[弦鉤浮營] of "Okgijinjangron(玉機眞藏論)" or taut, full, skip, float, deep [弦鉤代毛石] of "Pyeong-ingisangron(平人氣象論)". So with compass, carpenter's square, the beam of balance and the weight of balance, can judge is human correspond in Eum and Yang, four seasons, this is importantly used in examination of pulse[診脈] with existence and nonexistence, and prognosis of illness.