• Title/Summary/Keyword: InSnZnO

Search Result 290, Processing Time 0.028 seconds

The Effect of Adding Process of $Zn(NO_3)_2$ on the Properties of $(Zr_{0.8}Sn_{0.2})TiO_4$ Dielectrics Prepared by Coprecipitation of $(Zr^{4+}, Ti^{4+})$-Hydroxides in the Presence of $SnO_2$ Particles ($Zn(NO_3)_2$의 첨가공정이 부분 공침법으로 제조된 $(Zr_{0.8}Sn_{0.2})TiO_4$ 유전체의 특성에 미치는 영향)

  • 임경란;장진욱;홍국선;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.719-725
    • /
    • 1995
  • ZST powders were synthesized by coprecipitation of (Zr4+, Ti4+)-hydroxide in the presence of SnO2 particles. Zn(NO3)2 was used as a sintering additive, and according to the adding sequence, sintering and dielectric properties were investigated. Sintered densities of ZST prepared by adding Zn(NO3)2 before calcination were a little higher than those added after calcination, and dielectric properties of the specimen added by Zn(NO3)2 after calcination were better (sintered at 125$0^{\circ}C$/2 h ; Q$\times$f(GHz)=49, 000, $\varepsilon$r=41) than before calcination (Q$\times$f(GHz)=42, 000, $\varepsilon$r=39.5). Through the observation of TEM, it was identified that the cause was due to the difference of the degree of Zn2+ diffusion into grains. With increasing sintering time from 2 to 8 hrs, grain size was doubled and dielectric properties were somewhat deteriorated.

  • PDF

Growth of ZnSnO3 Thin Films on c-Al2O3 (0001) Substrate by Pulsed Laser Deposition

  • Manh, Trung Tran;Lim, Jae-Ryong;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.297-302
    • /
    • 2014
  • $La_{0.5}Sr_{0.5}CoO_3$ (LSCO) electrode thin films with a resistivity of ~ 1,600 ${\mu}{\Omega}cm$ were grown on c-$Al_2O_3$ (0001) substrate. $ZnSnO_3$ (ZTO) thin films with different thicknesses were directly grown on LSCO/c-$Al_2O_3$ (0001) substrates at a substrate temperature that ranged from 550 to $750^{\circ}C$ using Pulsed Laser Deposition (PLD). The secondary phase $Zn_2SnO_4$ occurred during the growth of ZTO films and it became more significant with further increasing substrate temperature. Polarization-electric-field (P-E) hysteresis characteristics, with a remnant polarization and coercive field of 0.05 ${\mu}C/cm^2$ and 48 kV/cm, respectively, were obtained in the ZTO film grown at $700^{\circ}C$ in 200 mTorr.

SnS-embedded High Performing and Transparent UV Photodetector (SnS 기반의 고성능 투명 UV 광검출기)

  • Park, Wang-Hee;Ban, Dong-Kyun;Kim, Hyunki;Kim, Hong-Sik;Patel, Malkeshkumar;Yoo, Jeong Hee;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.445-448
    • /
    • 2016
  • Transparent UV photodetector was achieved by using wide bandgap metal oxide materials. In order to realize transparent heterojunction UV photodetector, n-type ZnO and p-type NiO metal oxide materials were employed. High light-absorbing SnS layer was inserted into the n-ZnO and p-NiO layers. High-performing UV photodetector was realized by ZnO/SnS/NiO/ITO structures to provide extremely fast response times (Fall time: $7{\mu}s$ and rise time: $13{\mu}s$) and high rectifying ratio. The use of functional SnS-embedded photodetector would provide a route for high functional photoelectric devices.

MEMS based on nanoparticle gas sensor for air quality system (유해가스 차단시스템용 MEMS 가스 센서)

  • Lee, Eui-Bok;Park, Young-Wook;Hwang, In-Sung;Kim, Sun-Jung;Cha, Jun-Gho;Lee, Ho-Jun;Lee, Jong-Heun;Ju, Byeong-Kwon
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.37-42
    • /
    • 2009
  • In this study, nanopower ZnO and $SnO_2$ as sensing materials were prepared by hydrazine and hydrothermal routes, respectively, and were doped with Pd, Ru catalyst. The CO and $NO_2$ sensors were fabricated by coating of sensing materials on the MEMS-based structure with electrodes and heaters. The 0.1 wt% Pd doped $SnO_2$ sensor and Ru doped ZnO sensor showed the high sensor response to CO 30 ppm and $NO_2$ 1 ppm, respectively. The sensor signal was stable. This can be used for the detection of pollutant gases emitted from gasoline engine.

  • PDF

Fabrication and Properties of ZnSnO3 Piezoelectric Films Deposited by a Pulsed Laser Deposition (Pulsed Laser Deposition 방법으로 증착된 ZnSnO3 압전 박막의 성장과 특성 평가)

  • Park, Byeong-Ju;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.18-21
    • /
    • 2014
  • Because the Pb-based piezoelectric materials showed problems such as an environmental pollution. lead-free $O_3$ materials were studied in the present study. The $O_3$ thin films were deposited at $640^{\circ}C$ on $Pt/Ti/SiO_2$ substrate by pulsed laser deposition (PLD) and were annealed for 5 min at $750^{\circ}C$ using rapid thermal annealing (RTA) in nitrogen atmosphere. Samples annealed at $750^{\circ}C$ showed a smooth morphology and an improvement of the dielectric and leakage properties, as compared with as-grown samples. However, electrical properties of the $O_3$ thin films obtained in the present study should be improved for piezoelectric applications.

Characteristic of Al-In-Sn-ZnO Thin Film Prepared by FTS System with Hetero Targets

  • Hong, Jeong-Soo;Kim, Kyung-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.76-79
    • /
    • 2011
  • In order to improve efficiency and make a new material thin film, we prepared the Al-In-Sn-ZnO thin film on a glass substrate at room temperature using a Facing Target Sputtering (FTS) system. The FTS system was designed to array two targets that face each other. Two different kinds of targets were installed on the FTS system. We used an ITO ($In_2O_3$ 90wt%, $SnO_2$ 10wt%) target and an AZO (ZnO 98wt%, $Al_2O_3$ 2wt%) target. The AIZTO films were deposited using different applied powers to the targets. The as-deposited AIZTO thin films were investigated using a UV/VIS spectrometer, an X-ray diffratometer (XRD), and Energy Dispersive X-ray spectroscopy (EDX).

Influence of Sn Doping on Structural and Optical Properties of Zinc Oxide Nanorods Prepared Via Hydrothermal Process

  • Park, Hyunggil;Kim, Younggyu;Ji, Iksoo;Kim, Soaram;Kim, Jin Soo;Son, Jeong-Sik;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.203.2-203.2
    • /
    • 2013
  • Hydrothermally grown ZnO nanorods were synthesized with various Sn contents on quartz substrates, ranging from 0 to 2.5 at% in increment 0.5 at%. Scanning electron microscopy (SEM) and ultraviolet (UV)- visible spectroscopy were used to determine the effect of Sn doping on the structural and optical properties. In the SEM images, the nanorods have hexagonal wurzite structure and the diameter of the nanorods increase with increase in the Sn contents. The optical parameters of the Sn-doped ZnO nanorods such as the absorption coefficients, optical bandgaps, Urbach energies, refractive indices, dispersion parameters, dielectric constants, and optical conductivities were gained from the transmittance and reflectance results. In the PL spectra, the NBE peaks in the UV region decrease and blue-shift with increase in the Sn contents. In addition, the DLE peaks in the visible region of the nanorods shift toward low-energy region when the ZnO nanorods doped with various Sn contents.

  • PDF

Electrical Characterization of Amorphous Zn-Sn-O Transistors Deposited through RF-Sputtering

  • Choi, Jeong-Wan;Kim, Eui-Hyun;Kwon, Kyeong-Woo;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.304.1-304.1
    • /
    • 2014
  • Flat-panel displays have been growing as an essential everyday product in the current information/communication ages in the unprecedented speed. The forward-coming applications require light-weightness, higher speed, higher resolution, and lower power consumption, along with the relevant cost. Such specifications demand for a new concept-based materials and applications, unlike Si-based technologies, such as amorphous Si and polycrystalline Si thin film transistors. Since the introduction of the first concept on the oxide-based thin film transistors by Hosono et al., amorphous oxide thin film transistors have been gaining academic/industrial interest, owing to the facile synthesis and reproducible processing despite of a couple of shortcomings. The current work places its main emphasis on the binary oxides composed of ZnO and SnO2. RF sputtering was applied to the fabrication of amorphous oxide thin film devices, in the form of bottom-gated structures involving highly-doped Si wafers as gate materials and thermal oxide (SiO2) as gate dielectrics. The physical/chemical features were characterized using atomic force microscopy for surface morphology, spectroscopic ellipsometry for optical parameters, X-ray diffraction for crystallinity, and X-ray photoelectron spectroscopy for identification of chemical states. The combined characterizations on Zn-Sn-O thin films are discussed in comparison with the device performance based on thin film transistors involving Zn-Sn-O thin films as channel materials, with the aim to optimizing high-performance thin film transistors.

  • PDF

$NO_{2}$ Sensing Properties of Oxide Semiconductor Thick Films (산화물 반도체형 후막 가스 센서의 이산화질소 감지 특성)

  • Kim, Seung-Ryeol;Yun, Dong Hyun;Hong, Hyung-Ki;Kwon, Chul-Han;Lee, Kyu-Chung
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.451-457
    • /
    • 1997
  • The thick films of oxide semiconductors such as $WO_{3}$, $SnO_{2}$ and ZnO for the $NO_{2}$ detection of sub-ppm range have been prepared and their characteristics were investigated. It is showed that the optimum operating temperatures of the sensors are $300^{\circ}C$ and $220{\sim}260^{\circ}C$ for $WO_{3}$-based and $SnO_{2}$-based thick films, and ZnO-based thick films, respectively. Since the resistance of ZnO-based thick films are extremely high($>10^{6}{\Omega}$), the signal to noise ratio was comparatively low. In order to determine the selectivity, the films are exposed to the interfering gases such as ozone, ammonia, methane and the mixture of carbon monoxide and propane. $WO_{3}$-ZnO(3 wt.%) and $SnO_{2}-WO_{3}$(3 wt.%) thick film sensors show high sensitivity, good selectivity, excellent reproducibility and the linearity of $NO_{2}$ concentration versus sensor resistance. The preliminary results clearly demonstrated that the sensor can be successfully applied for the detection of $NO_{2}$ in sub-ppm range.

  • PDF

Effects of Sputter Deposition Sequence and Sulfurization Process of Cu, Zn, Sn on Properties of Cu2ZnSnS4 Solar Cell Material (Cu, Zn, Sn의 스퍼터링 적층방법과 황화 열처리공정이 Cu2ZnSnS4 태양전지재료 특성에 미치는 효과)

  • Park, Nam-Kyu;Arepalli, Vinaya Kumar;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.304-308
    • /
    • 2013
  • The effect of a sputter deposition sequence of Cu, Zn, and Sn metal layers on the properties of $Cu_2ZnSnS_4$ (CZTS) was systematically studied for solar cell applications. The set of Cu/Sn/Zn/Cu multi metal films was deposited on a Mo/$SiO_2$/Si wafer using dc sputtering. CZTS films were prepared through a sulfurization process of the Cu/Sn/Zn/Cu metal layers at $500^{\circ}C$ in a $H_2S$ gas environment. $H_2S$ (0.1%) gas of 200 standard cubic centimeters per minute was supplied in the cold-wall sulfurization reactor. The metal film prepared by one-cycle deposition of Cu(360 nm)/Sn(400 nm)/Zn(400 nm)/Cu(440 nm) had a relatively rough surface due to a well-developed columnar structure growth. A dense and smooth metal surface was achieved for two- or three-cycle deposition of Cu/Sn/Zn/Cu, in which each metal layer thickness was decreased to 200 nm. Moreover, the three-cycle deposition sample showed the best CZTS kesterite structures after 5 hr sulfurization treatment. The two- and three-cycle Cu/Sn/Zn/Cu samples showed high-efficient photoluminescence (PL) spectra after a 3 hr sulfurization treatment, wheres the one-cycle sample yielded poor PL efficiency. The PL spectra of the three-cycle sample showed a broad peak in the range of 700-1000 nm, peaked at 870 nm (1.425 eV). This result is in good agreement with the reported bandgap energy of CZTS.