DOI QR코드

DOI QR Code

Growth of ZnSnO3 Thin Films on c-Al2O3 (0001) Substrate by Pulsed Laser Deposition

  • Manh, Trung Tran (Department of Materials Science and Engineering, Chungnam National University) ;
  • Lim, Jae-Ryong (Department of Materials Science and Engineering, Chungnam National University) ;
  • Yoon, Soon-Gil (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2014.04.10
  • Accepted : 2014.04.23
  • Published : 2014.05.01

Abstract

$La_{0.5}Sr_{0.5}CoO_3$ (LSCO) electrode thin films with a resistivity of ~ 1,600 ${\mu}{\Omega}cm$ were grown on c-$Al_2O_3$ (0001) substrate. $ZnSnO_3$ (ZTO) thin films with different thicknesses were directly grown on LSCO/c-$Al_2O_3$ (0001) substrates at a substrate temperature that ranged from 550 to $750^{\circ}C$ using Pulsed Laser Deposition (PLD). The secondary phase $Zn_2SnO_4$ occurred during the growth of ZTO films and it became more significant with further increasing substrate temperature. Polarization-electric-field (P-E) hysteresis characteristics, with a remnant polarization and coercive field of 0.05 ${\mu}C/cm^2$ and 48 kV/cm, respectively, were obtained in the ZTO film grown at $700^{\circ}C$ in 200 mTorr.

Keywords

References

  1. P. S. Halasyamani and K. R. Poeppelmeier, Chem. Mater., 10, 2753 (1998). https://doi.org/10.1021/cm980140w
  2. Y. Inaguma, M. Yoshida, and T. Katsumata, J. Am. Chem. Soc., 130, 6704 (2008). https://doi.org/10.1021/ja801843v
  3. Z. L. Wang and J. H. Song, Science, 32, 242 (2006).
  4. K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, Science, 306, 1005 (2004). https://doi.org/10.1126/science.1103218
  5. Y. Wakasaa, I. Kannoa, R. Yokokawaa, H. Koteraa, K. Shibatab, and T. Mishima, Sensor. Actuat., Phys. A, 171, 223 (2011). https://doi.org/10.1016/j.sna.2011.06.018
  6. I. Kanno, T. Mino, S. Kuwajima, T. Suzuki, H. Kotera, and K. Wasa, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54, 2562 (2007). https://doi.org/10.1109/TUFFC.2007.577
  7. J. Y. Son, G. Lee, M. H. Jo, H. Kim, H. M. Jang, and Y. H. Shin, J. Am. Chem. Soc., 131, 8386 (2009). https://doi.org/10.1021/ja903133n
  8. G. Kang, K. Yao, and J. Wang, Journal of the American Ceramic Society, 95, 986 (2012).
  9. J. Jiang, H. J. Jung, and S. G. Yoon, J. Alloy. Compd., 509, 6924 (2011). https://doi.org/10.1016/j.jallcom.2011.04.002
  10. J. Jiang and S. G. Yoon, J. Alloy. Compd., 509, 3065 (2011). https://doi.org/10.1016/j.jallcom.2010.11.200
  11. A. I. Kingon and S. Srinivasan, Nat. Mater., 4, 233 (2005). https://doi.org/10.1038/nmat1334
  12. R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C. H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y. H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, and R. Ramesh, Science, 326, 977 (2009). https://doi.org/10.1126/science.1177046
  13. J. M. Wu, C. Xu, Y. Zhang, and Z. L. Wang, ACS Nano, 6, 4335 (2012). https://doi.org/10.1021/nn300951d
  14. J. H. Jung, M. Lee, J. I. Hong, Y. Ding, C. Y. Chen, L. J. Chou, and Z. L. Wang, ACS Nano, 5, 10041 (2011). https://doi.org/10.1021/nn2039033
  15. H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Appl. Phys. Lett., 86, 013503 (2004).
  16. I. G. Pathan, D. N. Suryawanshi, A. R. Bari, D. S. Rane, and L. A. Patil, Advanced Nanomaterials and Nanotechnology, 143, 143 (2013). https://doi.org/10.1007/978-3-642-34216-5_15