• Title/Summary/Keyword: InGaN/GaN light-emitting diode

Search Result 111, Processing Time 0.031 seconds

Characteristics of a Blue Light Emitting Diode with In$_{x}$Ga$_{1-x}$N MQW Structure Grwon by MOCVD (MOCVD로 성장된 In$_{x}$Ga$_{1-x}$N MQW 구조의 청색 발광당이오드의 특성)

  • 이숙헌;배성범;태흥식;이승하;함성호;이용현;이정희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.8
    • /
    • pp.24-30
    • /
    • 1998
  • A blue LED of $In_{x}Ga_{1-x}N$ multiple quantum well structure which had the blue emission spectrum of donor-acceptor pair transition generated form Si-Zn co-doped $In_{x}Ga_{1-x}N$ active layer, was fabricated. The $In_{x}Ga_{1-x}N$ MQW heterojunction LED structure was grown by MOCVD on the sapphire substrate with (0001) surface orientation at 800.deg. C. The fabricated LED exhibited forward cut-in voltage of 4~4.5V and reverse breakdown voltage of -13V. Its optical chracteristics showed that the center wavelength of peak emission occurred at 460nm and the optical intensity was increased linearly with respect to the injected electrical current above 5mA.

  • PDF

Development of ZnSSe:Te/ZnMgSSe DH structure Blue~Green tight Emitting Diodes (ZnSSe:Te/ZnMgSSe DH 구조 청색~녹색발광다이오드의 개발)

  • 이홍찬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.33-41
    • /
    • 2003
  • The optical properties of $ZnS_ySe_{1-\chi-y}:Te_{\chi}(\chi<0.08,y~0.11)$ alloys grown by molecular beam epitaxy (MBE) have been investigated by photoluminescence (PL) and PL-excitation (PLE) spectroscopy. Good optical properties and high crystal quality were established with lattice match condition to GaAs substrate. At room temperature, emission in the visible spectrum region from blue to green was obtained by varying the Te content of the ZnSSe:Te alloy. The efficient blue and green emission were assigned to $Te_1 and Te_n(n\geq2)$cluster bound excitons, respectively. Bright green (535 nm) and blue (462 nm) light emitting diodes (LEDs) have been developed using ZnSSe:Te system as an active layer. The turn-on voltage of 2.1 V in current-voltage characteristics is very small compared to that of commercial InGaN-based LEDs (>3.4 V), indicating the formation of a good ohmic contact due to the optimized p-ZnSe/p-ZnTe multi-quantum well (MQW) superlattice electrode layers.

Microtube Light-Emitting Diode Arrays with Metal Cores

  • Tchoe, Youngbin;Lee, Chul-Ho;Park, Junbeom;Baek, Hyeonjun;Chung, Kunook;Jo, Janghyun;Kim, Miyoung;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.287.1-287.1
    • /
    • 2016
  • Three-dimensional (3-D) semiconductor nanoarchitectures, including nano- and micro- rods, pyramids, and disks, are emerging as one of the most promising elements for future optoelectronic devices. Since these 3-D semiconductor nanoarchitectures have many interesting unconventional properties, including the use of large light-emitting surface area and semipolar/nonpolar nano- or micro-facets, numerous studies reported on novel device applications of these 3-D nanoarchitectures. In particular, 3-D nanoarchitecture devices can have noticeably different current spreading characteristics compared with conventional thin film devices, due to their elaborate 3-D geometry. Utilizing this feature in a highly controlled manner, color-tunable light-emitting diodes (LEDs) were demonstrated by controlling the spatial distribution of current density over the multifaceted GaN LEDs. Meanwhile, for the fabrication of high brightness, single color emitting LEDs or laser diodes, uniform and high density of electrical current must be injected into the entire active layers of the nanoarchitecture devices. Here, we report on a new device structure to inject uniform and high density of electrical current through the 3-D semiconductor nanoarchitecture LEDs using metal core inside microtube LEDs. In this work, we report the fabrications and characteristics of metal-cored coaxial $GaN/In_xGa_{1-x}N$ microtube LEDs. For the fabrication of metal-cored microtube LEDs, $GaN/In_xGa_{1-x}N/ZnO$ coaxial microtube LED arrays grown on an n-GaN/c-Al2O3 substrate were lifted-off from the substrate by wet chemical etching of sacrificial ZnO microtubes and $SiO_2$ layer. The chemically lifted-off layer of LEDs were then stamped upside down on another supporting substrates. Subsequently, Ti/Au and indium tin oxide were deposited on the inner shells of microtubes, forming n-type electrodes of the metal-cored LEDs. The device characteristics were investigated measuring electroluminescence and current-voltage characteristic curves and analyzed by computational modeling of current spreading characteristics.

  • PDF

A New type $1.0\;mm\;{\times}\;0.5mm$ Light Emitting Diode using AlInGaN cell structure and Its Display Module

  • Park, Book-Sung;Kim, Sung-Woon;Lee, Seon-Gu;Son, Sung-Il;Kim, Eun-Tae;Kim, Chul-Ju
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.557-560
    • /
    • 2008
  • The main goal of this work is to fabricate light emitting diode (LED) module and apply it to mobile handset. We first fabricated the blue-color LED based on the AlInGaN cell structure with size of $200\;{\mu}m\;{\times}\;200\;{\mu}m$. Also we proposed a new $1.0\;mm\;{\times}\;0.5\;mm$ (1005size) packaging procedure for the LED cell. Thus the overall dimension of our LED cell was as small as $1.0\;mm\;{\times}\;0.5\;mm\;{\times}\;0.4\;mm$ ($W\;{\times}\;L\;{\times}\;T$). As far as we knew it was the first time that this small LED cell dimension had been fabricated and operated.

  • PDF

Luminescence Properties of Blue Light-emitting Diode Grown on Patterned Sapphire Substrate

  • Wang, Dang-Hui;Xu, Tian-Han;Wang, Lei
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.358-363
    • /
    • 2017
  • In this study, we present a detailed investigation of luminescence properties of a blue light-emitting diode using InGaN/GaN (indium component is 17.43%) multiple quantum wells as the active region grown on patterned sapphire substrate by low-pressure metal-organic chemical vapor deposition (MOCVD). High-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman scattering (RS) and photoluminescence (PL) measurements are employed to study the crystal quality, the threading dislocation density, surface morphology, residual strain existing in the active region and optical properties. We conclude that the crystalline quality and surface morphology can be greatly improved, the red-shift of peak wavelength is eliminated and the superior blue light LED can be obtained because the residual strain that existed in the active region can be relaxed when the LED is grown on patterned sapphire substrate (PSS). We discuss the mechanisms of growing on PSS to enhance the superior luminescence properties of blue light LED from the viewpoint of residual strain in the active region.

Growth of InGaN/AlGaN heterostructure by mixed-source HVPE with multi-sliding boat system (Multi-sliding boat 방식을 이용한 혼합소스 HVPE에 의한 InGaN/AlGaN 이종 접합구조의 성장)

  • Jang, K.S.;Kim, K.H.;Hwang, S.L.;Jeon, H.S.;Choi, W.J.;Yang, M.;Ahn, H.S.;Kim, S.W.;Yoo, J.;Lee, S.M.;Koike, M.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.162-165
    • /
    • 2006
  • The selective growth of InCaN/AlGaN light emitting diodes was performed by mixed-source hydride vapor phase epitaxy (HVPE). In order to grow the InGaN/AlGaN heterosturcture consecutively, a special designed multi-sliding boat was employed in our mixed-source HVPE system. Room temperature electroluminescence spectum of the SAG-InGaN/AlGaN LED shows an emission peak wavelength of 425 nm at injection current 20 mA. We suggest that the mixed-source HVPE method with multi-sliding boat system is possible to be one of the growth methods of III-nitrides LEDs.

The Fabrication of Gallium Phosphide Red Light Emitting Diode by Liquid Phase Epitaxy (갈륨인 단결정 성장으로 이룩한 적색 발광 다이오드의 제작)

  • 김종국;민석기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.10 no.3
    • /
    • pp.1-9
    • /
    • 1973
  • Gallium phosphide light emitting diode (LED) has been fabricated first time for pilot lamp and numeric display purposes. Bright red light is obtained in forward bias at very low current of one to five mA. A typical p-n junction is formed by liquid phase epitaxial growth on a n-type gallium physphide substrate. The crystal growth is achieved at about 1300$^{\circ}$K after the equilibrium of the gallium solution followed by tipping operation. The ohmic contact is made by wire bonding by thermal compression technique. The entire process is well fit for laboratory scale to fabricate a few hundred diodes for mainly demonstration purpose. For mass production, a large sum of the capital investment is required. The great merit of gallium phosphide LED is at low current operation, and green light emission is also obtainable by nitrogen doping.

  • PDF

Effect of Si-doping on the luminescence properties of InGaN/GaN green LED with graded short-period superlattice

  • Cho, Il-Wook;Lee, Dong Hyun;Ryu, Mee-Yi;Kim, Jin Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.280.1-280.1
    • /
    • 2016
  • Generally InGaN/GaN green light emitting diode (LED) exhibits the low quantum efficiency (QE) due to the large lattice mismatch between InGaN and GaN. The QE of InGaN-based multiple quantum wells (MQWs) is drastically decreased when an emission wavelength shifts from blue to green wavelength, so called "green gap". The "green gap" has been explained by quantum confined Stark effect (QCSE) caused by a large lattice mismatch. In order to improve the QE of green LED, undoped graded short-period InGaN/GaN superlattice (GSL) and Si-doped GSL (SiGSL) structures below the 5-period InGaN/GaN MQWs were grown on the patterned sapphire substrates. The luminescence properties of InGaN/GaN green LEDs have been investigated by using photoluminescence (PL) and time-resolved PL (TRPL) measurements. The PL intensity of SiGSL sample measured at 10 K shows stronger about 1.3 times compared to that of undoped GSL sample, and the PL peak wavelength at 10 K appears at 532 and 525 nm for SiGSL and undoped GSL, respectively. Furthermore, the PL decay of SiGSL measured at 10 K becomes faster than that of undoped GSL. The faster decay for SiGSL is attributed to the increased wavefunction overlap between electron and hole due to the screening of piezoelectric field by doped carriers. These PL and TRPL results indicate that the QE of InGaN/GaN green LED with GSL structure can be improved by Si-doping.

  • PDF

Insertion of Carbon Interlayer Into GaN Epitaxial Layer

  • Yu, H.S.;Park, S.H.;Kim, M.H.;Moon, D.Y.;Nanishi, Y.;Yoon, E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.148-149
    • /
    • 2012
  • This paper reports doping of carbon atoms in GaN layer, which based on dimethylhydrazine (DMHy) and growth temperature. It is well known that dislocations can act as non-radiative recombination center in light emitting diode (LED). Recently, many researchers have tried to reduce the dislocation density by using various techniques such as lateral epitaxial overgrowth (LEO) [1] and patterned sapphire substrate (PSS) [2], and etc. However, LEO and PSS techniques require additional complicated steps to make masks or patterns on the substrate. Some reports also showed insertion of carbon doped layer may have good effect on crystal quality of GaN layer [3]. Here we report the growth of GaN epitaxial layer by inserting carbon doped GaN layer into GaN epitaxial layer. GaN:C layer growth was performed in metal-organic chemical vapor deposition (MOCVD) reactor, and DMHy was used as a carbon doping source. We elucidated the role of DMHy in various GaN:C growth temperature. When growth temperature of GaN decreases, the concentration of carbon increases. Hence, we also checked the carbon concentration with DMHy depending on growth temperature. Carbon concentration of conventional GaN is $1.15{\times}1016$. Carbon concentration can be achieved up to $4.68{\times}1,018$. GaN epilayer quality measured by XRD rocking curve get better with GaN:C layer insertion. FWHM of (002) was decreased from 245 arcsec to 234 arcsec and FWHM of (102) decreased from 338 arcsec to 302 arcsec. By comparing the quality of GaN:C layer inserted GaN with conventional GaN, we confirmed that GaN:C interlayer can block dislocations.

  • PDF

ZnO films grown on GaN/sapphire substrates by pulsed laser deposition

  • Suh, Joo-Young;Song, Hoo-Young;Shin, Myoung-Jun;Park, Young-Jin;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.207-207
    • /
    • 2010
  • Both ZnO and GaN have excellent physical properties in optoelectronic devices such as blue light emitting diode (LED), blue laser diode (LD), and ultra-violet (UV) detector. The ZnO/GaN heterostructure, which has a potential to achieve the cost efficient LED technology, has been fabricated by using radio frequency (RF) sputtering, pyrolysis, metal organic chemical vapor deposition (MOCVD), direct current (DC) arc plasmatron, and pulsed laser deposition (PLD) methods. Among them, the PLD system has a benefit to control the composition ratio of the grown film from the mixture target. A 500-nm-thick ZnO film was grown by PLD technique on c-plane GaN/sapphire substrates. The post annealing process was executed at some varied temperature between from $300^{\circ}C$ to $900^{\circ}C$. The morphology and crystal structural properties obtained by using atomic force microscope (AFM) and x-ray diffraction (XRD) showed that the crystal quality of ZnO thin films can be improved as increasing the annealing temperature. We will discuss the post-treatment effect on film quality (uniformity and reliability) of ZnO/GaN heterostructures.

  • PDF