• Title/Summary/Keyword: In-silico docking

Search Result 84, Processing Time 0.025 seconds

Facile Docking and Scoring Studies of Carborane Ligands with Estrogen Receptor

  • Ok, Kiwon;Jung, Yong Woo;Jee, Jun-Goo;Byun, Youngjoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1051-1054
    • /
    • 2013
  • Closo-carborane has been considered as an efficient boron-carrier for boron neutron capture therapy (BNCT) and an attractive surrogate of lipophilic phenyl or cyclohexyl ring in drug design. Despite a great number of carborane-containing ligands have been synthesized and evaluated, molecular modeling studies of carborane ligands with macromolecules have been rarely reported. We herein describe a facile docking and scoring-function strategy of 16 carborane ligands with an estrogen receptor by using the commercial Gaussian, Chem3D Pro and Discovery Studio (DS) computational programs. Docked poses of the carborane ligands in silico exhibited similar binding modes to that of the crystal ligand in the active site of estrogen receptor. Score analysis of the best docked pose for each ligand indicated that the Ligscore1 and the Dockscore have a moderate correlation with in vitro biological activity. This is the first report on the scoring-correlation studies of carborane ligands with macromolecules. The integrated Gaussian-DS approach has a potential application for virtual screening, De novo design, and optimization of carborane ligands in medicinal chemistry.

Docking Study of Flavonols and Human c-Jun N-terminal Kinase 1

  • Lee, Jee-Young;Jeong, Ki-Woong;Heo, Yong-Seok;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2147-2150
    • /
    • 2010
  • c-Jun N-terminal kinase 1 (JNK1) is involved in apoptosis, cell differentiation and proliferation. It has been reported that a flavonol, quercetin, induces cell apoptosis and JNK inhibition. In order to understand the interactions of quercetin and JNK1, we performed receptor-oriented pharmacophore based in silico screening and determined a binding model of human JNK1 and quercetin at the ATP binding site of JNK1. 5-OH of A-ring and carbonyl oxygen of C-ring of quercetin participated in hydrogen bonding interactions with backbone of E109 and M111. Additionally, 3'-OH of quercetin formed a hydrogen bond with backbone of I32. One hydrophobic interaction is related on the binding of quercetin to JNK1 with I32, N114, and V158. Based on this model, we conducted a docking study with other 8 flavonols to find possible flavonoids inhibitors of JNK1. We proposed that one flavonols, rhamnetin, can be a potent inhibitor of JNK and 5-OH of A-ring and 3'-OH of B-ring of flavonols are the essential features for JNK1 inhibition.

In silico docking of methyl isocyanate (MIC) and its hydrolytic product (1, 3-dimethylurea) shows significant interaction with DNA Methyltransferase 1 suggests cancer risk in Bhopal-Gas-Tragedy survivors

  • Khan, Inbesat;Senthilkumar, Chinnu Sugavanam;Upadhyay, Nisha;Singh, Hemant;Sachdeva, Meenu;Jatawa, Suresh Kumar;Tiwari, Archana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7663-7670
    • /
    • 2015
  • DNA methyltransferase 1 (DNMT1) is a relatively large protein family responsible for maintenance of normal methylation, cell growth and survival in mammals. Toxic industrial chemical exposure associated methylation misregulation has been shown to have epigenetic influence. Such misregulation could effectively contribute to cancer development and progression. Methyl isocyanate (MIC) is a noxious industrial chemical used extensively in the production of carbamate pesticides. We here applied an in silico molecular docking approach to study the interaction of MIC with diverse domains of DNMT1, to predict cancer risk in the Bhopal population exposed to MIC during 1984. For the first time, we investigated the interaction of MIC and its hydrolytic product (1,3-dimethylurea) with DNMT1 interacting (such as DMAP1, RFTS, and CXXC) and catalytic (SAM, SAH, and Sinefungin) domains using computer simulations. The results of the present study showed a potential interaction of MIC and 1,3-dimethylurea with these domains. Obviously, strong binding of MIC with DNMT1 interrupting normal methylation will lead to epigenetic alterations in the exposed humans. We suggest therefore that the MIC-exposed individuals surviving after 1984 disaster have excess risk of cancer, which can be attributed to alterations in their epigenome. Our findings will help in better understanding the underlying epigenetic mechanisms in humans exposed to MIC.

An In Silico Drug Repositioning Strategy to Identify Specific STAT-3 Inhibitors for Breast Cancer

  • Sruthy Sathish
    • Journal of Integrative Natural Science
    • /
    • v.16 no.4
    • /
    • pp.123-131
    • /
    • 2023
  • Breast cancer continues to pose a substantial worldwide health challenge, thereby requiring the development of innovative strategies to discover new therapeutic interventions. Signal Transducer and Activator of Transcription 3 (STAT-3) has been identified as a significant factor in the development of several types of cancer, including breast cancer. This is primarily attributed to its diverse functions in promoting tumour formation and conferring resistance to therapeutic interventions. This study presents an in silico drug repositioning approach that focuses on identifying specific inhibitors of STAT-3 for the purpose of treating breast cancer. We initially examined the structural and functional attributes of STAT-3, thereby elucidating its crucial involvement in cellular signalling cascades. A comprehensive virtual screening was performed on a diverse collection of drugs that have been approved by the FDA from zinc15 database. Various computational techniques, including molecular docking, cross docking, and cDFT analysis, were utilised in order to prioritise potential candidates. This prioritisation was based on their predicted binding energies and outer molecular orbital reactivity. The findings of our study have unveiled a Dihydroergotamine and Paritaprevir that have been approved by the FDA and exhibit considerable promise as selective inhibitors of STAT-3. In conclusion, the utilisation of our in silico drug repositioning approach presents a prompt and economically efficient method for the identification of potential compounds that warrant subsequent experimental validation as selective STAT-3 inhibitors in the context of breast cancer. The present study highlights the considerable potential of employing computational strategies to expedite the drug discovery process. Moreover, it provides valuable insights into novel avenues for targeted therapeutic interventions in the context of breast cancer treatment.

Trend of In Silico Prediction Research Using Adverse Outcome Pathway (독성발현경로(Adverse Outcome Pathway)를 활용한 In Silico 예측기술 연구동향 분석)

  • Sujin Lee;Jongseo Park;Sunmi Kim;Myungwon Seo
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.113-124
    • /
    • 2024
  • Background: The increasing need to minimize animal testing has sparked interest in alternative methods with more humane, cost-effective, and time-saving attributes. In particular, in silico-based computational toxicology is gaining prominence. Adverse outcome pathway (AOP) is a biological map depicting toxicological mechanisms, composed of molecular initiating events (MIEs), key events (KEs), and adverse outcomes (AOs). To understand toxicological mechanisms, predictive models are essential for AOP components in computational toxicology, including molecular structures. Objectives: This study reviewed the literature and investigated previous research cases related to AOP and in silico methodologies. We describe the results obtained from the analysis, including predictive techniques and approaches that can be used for future in silico-based alternative methods to animal testing using AOP. Methods: We analyzed in silico methods and databases used in the literature to identify trends in research on in silico prediction models. Results: We reviewed 26 studies related to AOP and in silico methodologies. The ToxCast/Tox21 database was commonly used for toxicity studies, and MIE was the most frequently used predictive factor among the AOP components. Machine learning was most widely used among prediction techniques, and various in silico methods, such as deep learning, molecular docking, and molecular dynamics, were also utilized. Conclusions: We analyzed the current research trends regarding in silico-based alternative methods for animal testing using AOPs. Developing predictive techniques that reflect toxicological mechanisms will be essential to replace animal testing with in silico methods. In the future, since the applicability of various predictive techniques is increasing, it will be necessary to continue monitoring the trend of predictive techniques and in silico-based approaches.

In-silico Studies of Boerhavia diffusa (Purnarnava) Phytoconstituents as ACE II Inhibitor: Strategies to Combat COVID-19 and Associated Diseases

  • Rahul Maurya;Thirupataiah Boini;Lakshminarayana Misro;Thulasi Radhakrishnan
    • Natural Product Sciences
    • /
    • v.29 no.2
    • /
    • pp.104-112
    • /
    • 2023
  • COVID-19 caused a catastrophe in human health. People infected with COVID-19 also suffer from various clinical illnesses during and after the infection. The Boerhavia diffusa plant is well known for its antihypertensive activity. ACE-II inhibitors and calcium channel blockers are reported as mechanisms for the antihypertensive activity of B. diffusa phytoconstituents. Various studies have said ACE-II is the virus's binding site to attack host cells. COVID-19 treatment commonly employs a variety of synthetic antiviral and steroidal drugs. As a result, other clinical illnesses, such as hypertension and hyperglycemia, emerge as serious complications. Safe and effective drug delivery is a prime objective of the drug development process. COVID-19 is treated with various herbal treatments; however, they are not widely used due to their low potency. Many herbal plants and formulations are used to treat COVID-19 infection, in which B. diffusa is the most widely used plant. The current study relies on discovering active phytoconstituents with ACE-II inhibitory activity in the B. diffusa plant. As a result, it can be used as a treatment option for patients with COVID-19 and related diseases. Different phytoconstituents of the B. diffusa plant were selected from the reported literature. The activity of phytoconstituents against ACE-II proteins has been studied. Molecular docking and ligand-protein interaction computation tools are used in the in-silico experiment. Physicochemical, drug-likeness, water solubility, lipophilicity, and pharmacokinetic parameters are used to evaluate phytoconstituents. Liriodenine has the best drug-likeness, bioactivity, and binding score characteristics among the selected ligands. The in-silico study aims to find the therapeutic potential of B. diffusa phytoconstituents against ACE-II. Targeting ACE-II also shows an effect against SARS-CoV-2. It can serve as a rationale for designing a drug for patient infected with COVID-19 and associated diseases.

In Silico Molecular Docking Comparison of Tubocurarine and the Active Ingredients of Cimicifugae rhizoma on Acetylcholine Binding Proteins (In Silico 분자결합 분석방법을 활용한 tubocurarine과 승마 추출성분 actein의 아세틸콜린 결합 단백질 활성 부위에 대한 결합 친화도 비교 분석)

  • Kim, Dong-Chan
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.408-414
    • /
    • 2018
  • Actein is the well-known active ingredient of Cimicifugae rhizoma (Black cohosh). In this study, we investigated and compared the binding affinity of tubocurarine, actein, and actein derivatives on the B&C domain of the acetylcholine binding protein through in silico computational docking studies. The three-dimensional crystallographic structure of the acetylcholine binding protein B&C domain was obtained from the PDB database (PDB ID: 2XYT). An in silico computational autodocking analysis was performed using PyRx, Autodock Vina, Discovery Studio Version 4.5, and NX-QuickPharm based on scoring functions. The actein showed an optimum binding affinity (docking energy), with the acetylcholine binding protein at -10.50 kcal/mol as compared to the tubocurarine (-9.80 kcal/mol). The interacting amino acids tryptophan 84 and tryptophan 147, in the B domain of the acetylcholine binding protein active site, significantly interacted with the actein and 27-deoxyactein, and (26R)-actein. The centroid XYZ grid position of the tubocurarine was X=38.300689, Y=112.053467, and Z=51.991022, but the actein and its derivatives showed values around X=26.4, Y=127.3, Z=43.7. These results clearly indicated that actein and its derivatives could be a more potent antagonist to the acetylcholine binding protein than tubocurarine. Therefore, the extract of Cimicifugae rhizoma or actein containing biomaterials can substitute for the botulinum toxin-mediated acetylcholine receptor regulation, and be applied to the anti-wrinkle cosmetics industry.

Computational Evaluation on the Interactions of an Opaque-Phase ABC Transporter Associated with Fluconazole Resistance in Candida albicans, by the Psidium guajava Bio-Active Compounds

  • Mithil Vora;Smiline Girija Aseervatham Selvi;Shoba Gunasekaran;Vijayashree Priyadharsini Jayaseelan
    • Journal of Pharmacopuncture
    • /
    • v.27 no.2
    • /
    • pp.91-100
    • /
    • 2024
  • Objectives: Candida albicans is an opportunistic pathogen that occurs as harmless commensals in the intestine, urogenital tract, and skin. It has been influenced by a variety of host conditions and has now evolved as a resistant strain. The aim of this study was thus detect the fluconazole resistant C. albicans from the root caries specimens and to computationally evaluate the interactions of an opaque-phase ABC transporter protein with the Psidium guajava bio-active compounds. Methods: 20 carious scrapings were collected from patients with root caries and processed for the isolation of C. albicans and was screened for fluconazole resistance. Genomic DNA was extracted and molecular characterization of Cdrp1 and Cdrp2 was done by PCR amplification. P. guajava methanolic extract was checked for the antifungal efficacy against the resistant strain of C. albicans. Further in-silico docking involves retrieval of ABC transporter protein and ligand optimization, molinspiration assessment on drug likeness, docking simulations and visualizations. Results: 65% of the samples showed the presence of C.albicans and 2 strains were fluconazole resistant. Crude methanolic extract of P. guajava was found to be promising against the fluconazole resistant strains of C. albicans. In-silico docking analysis showed that Myricetin was a promising candidate with a high docking score and other drug ligand interaction scores. Conclusion: The current study emphasizes that bioactive compounds from Psidium guajava to be a promising candidate for treating candidiasis in fluconazole resistant strains of C. albicans However, further in-vivo studies have to be implemented for the experimental validation of the same in improving the oral health and hygiene.

Validation on the molecular docking efficiency of lipocalin family of proteins

  • Sokalingam, Sriram;Munussami, Ganapathiraman;Kim, Jung-Rae;Lee, Sun-Gu
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.293-300
    • /
    • 2018
  • Lipocalins are diverse group of small extracellular proteins found in various organisms. In this study, members of 10 non-homologous lipocalin-ligand crystal complex structures were remodeled using rigid and flexible ligand modes to validate the prediction efficiency of molecular docking simulation. The modeled ligand conformations indicated a high prediction accuracy in rigid ligand mode using cluster based analysis for most cases whereas the flexible ligand mode required further considerations such as ligand binding energy and RMSD for some cases. This in silico study is expected to serve as a platform in the screening of novel ligands against lipocalin family of proteins.