DOI QR코드

DOI QR Code

Validation on the molecular docking efficiency of lipocalin family of proteins

  • Received : 2018.03.26
  • Accepted : 2018.06.28
  • Published : 2018.11.25

Abstract

Lipocalins are diverse group of small extracellular proteins found in various organisms. In this study, members of 10 non-homologous lipocalin-ligand crystal complex structures were remodeled using rigid and flexible ligand modes to validate the prediction efficiency of molecular docking simulation. The modeled ligand conformations indicated a high prediction accuracy in rigid ligand mode using cluster based analysis for most cases whereas the flexible ligand mode required further considerations such as ligand binding energy and RMSD for some cases. This in silico study is expected to serve as a platform in the screening of novel ligands against lipocalin family of proteins.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. D.R. Flower, J. Mol. Recognit. 8 (1995) 185. https://doi.org/10.1002/jmr.300080304
  2. B. Akerstrom, D.R. Flower, J.P. Salier, Biochim. Biophys. Acta 1482 (2000) 1. https://doi.org/10.1016/S0167-4838(00)00137-0
  3. S. Pervaiz, K. Brew, FASEB J. 1 (1987) 209. https://doi.org/10.1096/fasebj.1.3.3622999
  4. D.R. Flower, FEBS Lett. 354 (1994) 7. https://doi.org/10.1016/0014-5793(94)01078-1
  5. D.R. Flower, Biochem. J. 318 (Pt. 1) (1996) 1. https://doi.org/10.1042/bj3180001
  6. S.W. Cowan, M.E. Newcomer, T.A. Jones, Proteins 8 (1990) 44. https://doi.org/10.1002/prot.340080108
  7. D.R. Flower, A.C. North, C.E. Sansom, Biochim. Biophys. Acta 1482 (2000) 9. https://doi.org/10.1016/S0167-4838(00)00148-5
  8. M. Gebauer, A. Skerra, Curr. Opin. Chem. Biol. 13 (2009) 245. https://doi.org/10.1016/j.cbpa.2009.04.627
  9. A. Richter, E. Eggenstein, A. Skerra, FEBS Lett. 588 (2014) 213. https://doi.org/10.1016/j.febslet.2013.11.006
  10. J. Mishra, C. Dent, R. Tarabishi, M.M. Mitsnefes, Q. Ma, C. Kelly, S.M. Ruff, K. Zahedi, M. Shao, J. Bean, K. Mori, J. Barasch, P. Devarajan, Lancet (Lond. Engl.) 365 (2005) 1231. https://doi.org/10.1016/S0140-6736(05)74811-X
  11. T. Hochepied, F.G. Berger, H. Baumann, C. Libert, Cytokine Growth Factor Rev. 14 (2003) 25. https://doi.org/10.1016/S1359-6101(02)00054-0
  12. S. Xu, P. Venge, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1482 (2000) 298. https://doi.org/10.1016/S0167-4838(00)00163-1
  13. R. Bruno, R. Olivares, J. Berille, P. Chaikin, N. Vivier, L. Hammershaimb, G.R. Rhodes, J.R. Rigas, Clin. Cancer Res. 9 (2003) 1077.
  14. C. Vincent, M.C. Kew, P. Bouic, M. Flacher, J.P. Revillard, Br. J. Cancer 59 (1989) 415. https://doi.org/10.1038/bjc.1989.83
  15. R. Mantyjarvi, J. Rautiainen, T. Virtanen, Biochim. Biophys. Acta 1482 (2000) 308. https://doi.org/10.1016/S0167-4838(00)00139-4
  16. Y. Teraoka, S. Kume, Y. Lin, S. Atsuji, T. Inui, Mol. Pharm. 14 (2017) 3558. https://doi.org/10.1021/acs.molpharmaceut.7b00590
  17. E. Jensen-Jarolim, L. Pacios, R. Bianchini, G. Hofstetter, F. Roth-Walter, Allergy 71 (2016) 286. https://doi.org/10.1111/all.12797
  18. H.M. Berman, T. Battistuz, T.N. Bhat, W.F. Bluhm, P.E. Bourne, K. Burkhardt, Z. Feng, G.L. Gilliland, L. Iype, S. Jain, P. Fagan, J. Marvin, D. Padilla, V. Ravichandran, B. Schneider, N. Thanki, H. Weissig, J.D. Westbrook, C. Zardecki, Acta Crystallogr. D Biol. Crystallogr. 58 (2002) 899. https://doi.org/10.1107/S0907444902003451
  19. K.R. Acharya, M.D. Lloyd, Trends Pharmacol. Sci. 26 (2005) 10. https://doi.org/10.1016/j.tips.2004.10.011
  20. N.S. Pagadala, K. Syed, J. Tuszynski, Biophys. Rev. 9 (2017) 91. https://doi.org/10.1007/s12551-016-0247-1
  21. S.F. Sousa, P.A. Fernandes, M.J. Ramos, Proteins 65 (2006) 15. https://doi.org/10.1002/prot.21082
  22. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, J. Comput. Chem. 30 (2009) 2785. https://doi.org/10.1002/jcc.21256
  23. Dassault Systemes BIOVIA, Discovery Studio Modeling Environment, Release 2017, San Diego: Dassault Systemes, 2017.
  24. Z. Bocskei, C.R. Groom, D.R. Flower, C.E. Wright, S.E.V. Phillips, A. Cavaggioni, J. B.C. Findlay, A.C.T. North, Nature 360 (1992) 186. https://doi.org/10.1038/360186a0
  25. P.R. Kuser, L. Franzoni, E. Ferrari, A. Spisni, I. Polikarpov, Acta crystallogr. D Biol. Crystallogr. 57 (2001) 1863. https://doi.org/10.1107/S090744490101825X
  26. J.A. Silvaroli, J.M. Arne, S. Chelstowska, P.D. Kiser, S. Banerjee, M. Golczak, J. Biol. Chem. 291 (2016) 8528. https://doi.org/10.1074/jbc.M116.714535
  27. G.J. Kleywegt, T. Bergfors, H. Senn, P. Le Motte, B. Gsell, K. Shudo, T.A. Jones, Structure (Lond. Engl.: 1993) 2 (1994) 1241. https://doi.org/10.1016/S0969-2126(94)00125-1
  28. R. Huber, M. Schneider, I. Mayr, R. Muller, R. Deutzmann, F. Suter, H. Zuber, H. Falk, H. Kayser, J. Mol. Biol. 198 (1987) 499. https://doi.org/10.1016/0022-2836(87)90296-8
  29. M. Cianci, P.J. Rizkallah, A. Olczak, J. Raftery, N.E. Chayen, P.F. Zagalsky, J.R. Helliwell, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 9795. https://doi.org/10.1073/pnas.152088999
  30. A. Eichinger, A. Nasreen, H.J. Kim, A. Skerra, J. Biol. Chem. 282 (2007) 31068. https://doi.org/10.1074/jbc.M703552200
  31. R. Ramoni, F. Vincent, S. Grolli, V. Conti, C. Malosse, F.D. Boyer, P. Nagnan-Le Meillour, S. Spinelli, C. Cambillau, M. Tegoni, J. Biol. Chem. 276 (2001) 7150. https://doi.org/10.1074/jbc.M010368200
  32. G. Kontopidis, C. Holt, L. Sawyer, J. Mol. Biol. 318 (2002) 1043. https://doi.org/10.1016/S0022-2836(02)00017-7
  33. G.C. Paesen, P.L. Adams, K. Harlos, P.A. Nuttall, D.I. Stuart, Mol. Cell 3 (1999) 661. https://doi.org/10.1016/S1097-2765(00)80359-7