• 제목/요약/키워드: In-based alloy

검색결과 1,325건 처리시간 0.035초

Effect of Zincate Treatment of As-Cast AZ91 Mg Alloy on Electrodeposition of Copper in a Copper Pyrophosphate Bath

  • Nguyen, Van Phuong;Park, Min-Sik;Yim, Chang Dong;You, Bong Sun;Moon, Sungmo
    • 한국표면공학회지
    • /
    • 제49권5호
    • /
    • pp.401-407
    • /
    • 2016
  • In this work, effect of zincate treatment of AZ91 Mg alloy on the following electrodeposition of copper was examined in a non-cyanide bath containing pyrophosphate ions in view of surface morphology and adhesion of the electrodeposited copper layer. Without zincate treatment, the electrodeposited copper layer showed very porous structure and poor adhesion. On the other hand, the copper layer electrodeposited on the zincate-treated surface showed dense structure and good adhesion. The dissolution rate of AZ91 Mg alloy after the zincate treatment appeared to decrease about 40 times in the copper pyrophosphate bath, as compared to that of the surface without zincate treatment. The porous morphology and poor adhesion of a copper layer on the AZ91 Mg alloy surface without zincate treatment were attributed to small number of nucleation sites of copper because of rapid dissolution of the magnesium substrate in the pyrophosphate bath. Based on the experimental results, it is concluded that the zincate treatment to form a conducting and protecting layer on the AZ91 Mg alloy surface is essential for successful electrodeposition of a copper layer on AZ91 Mg alloy with good adhesion and dense structure in the copper pyrophosphate bath.

금속 분말을 이용한 합금폼 제조 및 특성 (Fabrication and Properties of Alloy Foam Materials using Metal Powders)

  • 최내현;김구환
    • 한국분말재료학회지
    • /
    • 제17권6호
    • /
    • pp.489-493
    • /
    • 2010
  • Nickel-based and iron-based alloys have been developed and commercialized for a wide range of high performance applications at severely corrosive and high temperature environment. This alloy foam has an outstanding performance which is predestinated for diesel particulate filters, heat exchangers, and catalyst support, noise absorbers, battery, fuel cell, and flame distributers in burners in chemical and automotive industry. Production of alloy foam starts from high-tech coating technology and heat treatment of transient liquid-phase sintering in the high temperature. These technology allow for preparation of a wide variety of foam compositions such as Ni, Cr, Al, Fe on various pore size of pure nickel foam or iron foam in order for tailoring material properties to a specific application.

CaO 첨가에 의한 AZ31 합금 미세조직의 열적 안정성 변화 (Change in Microstructural Stability of AZ31 Alloy By the Addition of CaO)

  • 전중환
    • 열처리공학회지
    • /
    • 제26권3호
    • /
    • pp.113-119
    • /
    • 2013
  • Grain growth behaviors of hot-rolled AZ31 (Mg-3%Al-1%Zn) and AZ31-0.3%CaO alloys at elevated temperatures have been investigated in order to clarify the effect of CaO addition on grain stability of Mg-Al-based wrought alloy. The grain size of CaO-free alloy increased steeply from 673 K with an increase in annealing temperature from 573 to 773 K, whereas the grains of CaO-containing alloy were relatively stable up to 723 K. The activation energies for grain growth ($E_g$) were 12.2 and 18.3 kJ/mole between 573 and 673 K and 119.2 and 126.9 kJ/mole between 673 and 773 K in the AZ31 and AZ31-0.3%CaO alloys, respectively. This result indicates that grains in the CaO-added alloy possess higher thermal stability than CaO-free alloy. SEM observations on the annealed alloy samples revealed that higher grain stability resulting from CaO addition would be associated with the suppression of grain growth by Ca-related precipitate particles distributed in the microstructure.

금형주조기를 이용한 알루미늄 합금 금형의 수치해석적 열변형 해석과 실험에 관한 연구 (Numerical and Experimental Studies on Thermal Strain Analysis of Al Alloy Casting Mold using Metal Foundry)

  • 오율권;김용범;윤희성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2050-2054
    • /
    • 2007
  • This study numerically and experimentally investigated on thermal strain analysis of aluminum alloy casting mold using metal foundry. To predict the numerical result of thermal strain in Al alloy casting mold during the cooling process, it is performed the investigation of temperature distribution, stress and displacement based on the physical properties of Al alloy. In results of this study, Al alloy casting mold represented rapidly cooling graph during initial 20minutes after beginning cooling process, therefore value of stress and displacement is rapidly changed during initial 20minutes after beginning cooling process. In addition to, temperature distribution obtained by experiment confirmed corresponding pattern then compared numerical analysis with experiment. These results are distribute to make the effective and the high precision casting mold.

  • PDF

아연-마그네슘 합금의 열처리에 따른 기계적 특성 연구 (The Effect of Heat Treatment Hold Time for Mechanical Properties of Zinc-Magnesium Alloy)

  • 황인주
    • 열처리공학회지
    • /
    • 제33권3호
    • /
    • pp.117-123
    • /
    • 2020
  • Due to high corrosion resistance, Zinc has been widely used in the automobile, shipping or construction industries as a galvanizing material. Zinc is popular as a coating element, but its low mechanical strength impede the expansion of applications as a load-bearing structure. The mechanical strength of Zinc can be increased through zinc based alloy process, but the ductility is significantly reduced. In this study, the mechanical strength and ductility of Zinc-Magnesium alloys with respect to heat treatment hold time was investigated. In order to enhance the mechanical strength of Zinc, a Zinc-Magnesium alloy was fabricated by a melting process. The heat treatment process was performed to improve the ductility of Zinc-Magnesium alloy. The microstructure of the heat-treated alloy specimen was analyzed using SEM. The hardness and compressive strength of the specimen were measured by a micro-hardness tester and a nano-indenter, respectively.

인산염계 주형재와 치과주조용 Ti-Zr-Cr계 합금의 계면반응 (Surface Reaction between Phosphate bonded Investment and Ti-Zr-Cr based Alloy for Dental castings)

  • 정종현;주규지
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.73-78
    • /
    • 2005
  • The surface-reacted layer of titanium castings greatly affects their mechanical properties. This study analyzed the interfacial zone of Ti-20%Zr-5%Cr alloy castings obtained from phosphate bonded investment and examined the relationship between the surface-reacted layer and hardness. The Vickers hardness of cast disks were tested at 20$\mu m$ intervals from the surface to 120$\mu m$ in depth. The cross-section was observed metallurgically, and line profile of the reacted layer was conducted under the EDX. The surface-reacted layer of Ti-20%Zr-5%Cr alloy is showed a similar tendency to Ti-6%Al-4%V alloy in thickness, and also Si diffusion in multiple reacted layer of Ti-20%Zr-5%Cr alloy is less than cp Ti and similar to Ti-6%Al-4%V alloy. The Vickers hardness in the surface layer was greater than in the inner part, and the Vickers hardness of Ti-20%Zr-5%Cr alloy ranged 650 to 390 and cp Ti ranged 810 to 160, Ti-6%Al-4%V alloy ranged 710 to 530 respectively.

  • PDF

THREE DIMENSIONAL ATOM PROBE STUDY OF NI-BASE ALLOY/LOW ALLOY STEEL DISSIMILAR METAL WELD INTERFACES

  • Choi, Kyoung-Joon;Shin, Sang-Hun;Kim, Jong-Jin;Jung, Ju-Ang;Kim, Ji-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제44권6호
    • /
    • pp.673-682
    • /
    • 2012
  • Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multi-component metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

후열처리한 니켈기 자융성 합금 코팅의 알칼리 용액에서의 분극특성 (Polarization Characteristics of Heat-treated Ni-based Self-flux Alloy Coating in Alkaline Solution)

  • 김태용;김재동;김영식
    • 동력기계공학회지
    • /
    • 제18권2호
    • /
    • pp.37-42
    • /
    • 2014
  • The purpose of this paper is to investigate polarization characteristics of heat-treated Ni-based self-flux alloy coating in alkaline solution. Ni-based self-flux alloy powder was sprayed to a steel substrate using flame spray process, and heat treatments were performed in a vacuum furnace at $800^{\circ}C$, $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. After heat treatments, corrosion tests were carried out using potentiostat/galvanostat at solution with pH 8 and pH 13. Corrosion potential(Ecorr) and corrosion current density(Icorr) could be analyzed from polarization curve. Anticorrosive effect of heat-treated coating at solution with pH 8 was relatively greater than at solution with pH 13. Heat-treated coating at $1100^{\circ}C$ showed the greatest anti-corrosion characteristics in alkaline solution.

Experimental studies on the fatigue life of shape memory alloy bars

  • Casciati, Sara;Marzi, Alessandro
    • Smart Structures and Systems
    • /
    • 제6권1호
    • /
    • pp.73-85
    • /
    • 2010
  • The potential offered by the thermo-mechanical properties of shape memory alloys (SMA) in structural engineering applications has been the topic of many research studies during the last two decades. The main issues concern the long-term predictability of the material behaviour and the fatigue lifetime of the macro structural elements (as different from the one of wire segments). The laboratory tests reported in this paper are carried out on bar specimens and they were planned in order to pursue two objectives. First, the creep phenomenon is investigated for two different alloys, a classical Ni-Ti alloy and a Cu-based alloy. The attention is then focused on the Cu-based alloy only and its fatigue characteristics at given temperatures are investigated. Stress and thermal cycles are alternated to detect any path dependency.

Effect of Cu and Mg on Forging Property and Mechanical Behavior of Powder Forged Al-Si-Fe Based Alloy

  • Lee, Dong-Suk;Jung, Taek-Kyun;Kim, Mok-Soon;Kim, Won-Yong
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1000-1001
    • /
    • 2006
  • Two atomized alloy powders were pre-compacted by cold and subsequently hot forged at temperatures ranging from 653K to 845K. The addition of Cu and Mg causes a decrease in the eutectic reaction temperature of Al-10Si-5Fe-1Zr alloy from 841K to 786K and results in a decrease of flow stress at the given forging temperature. TEM observation revealed that in addition to Al-Fe based intermetallics, $Al_2Cu$ and $Al_2CuMg$ intermetallics appeared. The volume fraction of intermetallic dispersoids increased by the addition of Cu and Mg. Compressive strength of the present alloys was closely related to the volume fraction of intermetallic dispersoids.

  • PDF