Acknowledgement
Supported by : Athenaeum Research Fund of the University of Catania
References
- Auricchio, F., Faravelli, L., Magonette, G. and Torra, V. (2001), Shape memory alloys: advanced in modelling and applications, CIMNE, Barcelona, Spain.
- Casciati, F. and Faravelli, L. (2004), "Experimental characterization of a cu-based shape memory alloy toward its exploitation in passive control devices", J. Phys. IV, 115, 299-306.
- Casciati, F. and Faravelli, L. (2009), "A passive control device with SMA components: from the prototype to the model", Struct. Control Health Monit., DOI: 10.1002/stc.328.
- Casciati, F. and van der Eijk, C. (2008), "Variability in mechanical properties and microstructure characterization of CuAlBe shape memory alloys for vibration mitigation", Smart Struct. Syst., 4(2), 103-122. https://doi.org/10.12989/sss.2008.4.2.103
- Casciati, F., Casciati, S. and Faravelli, L. (2007), "Fatigue characterization of a cu-based shape memory alloy", Proc. of the Estonian Academy of Sciences, 56, 207-217.
- Casciati, F., Faravelli, L. and Hamdaoui, K. (2007), "Shape memory alloy bars assembled in a base isolator", Proc. of the ANCER Conf., Hong Kong.
- Casciati, F., Faravelli, L., Isalgue, A., Martorell, F., Soul, H. and Torra, V. (2008), "SMA fatigue in civil engineering applications", Adv. Sci. Technol., Trans Tech Publications, Switzerland, 59, 168-177.
- Casciati, S. and Faravelli, L. (2004), "Thermo-mechanic characterization of a cu-based shape memory alloy", Proc. of Int. Symposium on Network and Center-Based Research for Smart Structures Technologies and Earthquake Engineering, July 6-9, Osaka Univ., Suita, Osaka, Japan, 377-388.
- Casciati, S. and Faravelli, L. (2006), "Fatigue tests of a cu-based shape memory alloy", Proc. of the 4th World Conf. on Structural Control & Monitoring, San Diego, USA.
- Casciati, S. and Faravelli, L. (2008), "Structural components in shape memory alloy for localized energy dissipation", Comput. Struct., 86, 330-339. https://doi.org/10.1016/j.compstruc.2007.01.037
- Casciati, S. and Hamdaoui, K. (2008), "Experimental and numerical studies toward the implementation of shape memory alloy ties in masonry structures", Smart Struct. Syst., 4(2), 153-170. https://doi.org/10.12989/sss.2008.4.2.153
- Casciati, S. and Marzi, A. (2008), "Comparison of the thermo-mechanical behaviour of different shape memory alloys", Proc. of the 4th European Conf. on Structural Control, St. Petersburg, Russia, 1, 141-148.
- Casciati, S. and Osman, A. (2005), "Damage assessment and retrofit study for the Luxor Memnon Colossi", Struct. Control Health Monit., 12, 139-156. https://doi.org/10.1002/stc.53
- Montecinos, S., Moroni, M.O. and Sepùlveda, A. (2006), "Superelastic behaviour and damping capacity of CuAlBe alloys", Mater. Sci. Eng. A, 419, 91-97. https://doi.org/10.1016/j.msea.2005.11.057
- Olsen, J.S., van der Eijk, C. and Zhang, Z.L. (2008), "Analysis of shape memory alloy based seismic damper", Smart Struct. Syst., 4(2), 137-152. https://doi.org/10.12989/sss.2008.4.2.137
- Otsuka, K. and Wayman, C.M. (1999), Shape memory materials, Cambridge University Press.
- Torra, V., Isalgue, A., Auguet, C., Carreras, G., Lovey, F.C., Soul, H. and Terriault, P. (2009), "Damping in civil engineering using SMA. the fatigue behavior and stability of CuAlBe and NiTi alloys", J. Mater. Eng. Perform., DOI: 10.1007/s11665-009-9442-6, May.
- Torra, V., Isalgue, A., Martorell, F., Casciati, F., Lovey, F.C., Peigney, M., Terriault, P., Tirelli, D. and Zapico, B. (2009), "SMA in mitigation of extreme loads in civil engineering: damping of earthquake effects in family houses and in wind/rain perturbations on stayed cables in bridges", Proc. PROTECT, Japan.
- Torra, V., Isalgue, A., Martorell, F., Terriault, P. and Lovey, F.C. (2007), "Built in dampers for family homes via SMA: An ANSYS computation scheme based on mesoscopic and microscopic experimental analyses", Eng. Struct., 29, 1889-1902. https://doi.org/10.1016/j.engstruct.2006.08.028
Cited by
- Robust structural control with system constraints vol.19, pp.3, 2012, https://doi.org/10.1002/stc.447
- An analysis of pounding mitigation and stress waves in highway bridges with shape memory alloy pseudo-rubber shock-absorbing devices vol.23, pp.10, 2016, https://doi.org/10.1002/stc.1835
- Future applications of Ni-Ti alloys in automotive safety systems vol.15, pp.3, 2014, https://doi.org/10.1007/s12239-014-0049-z
- Testing and modelling of shape memory alloy plates for energy dissipators vol.14, pp.5, 2014, https://doi.org/10.12989/sss.2014.14.5.883
- A look into Cu-based shape memory alloys: Present scenario and future prospects vol.29, pp.16, 2014, https://doi.org/10.1557/jmr.2014.189
- Feasibility of shape memory alloy in a tuneable mass damper to reduce excessive in-service vibration vol.24, pp.2, 2017, https://doi.org/10.1002/stc.1858
- Feasibility of tension braces using Cu-Al-Mn superelastic alloy bars vol.21, pp.10, 2014, https://doi.org/10.1002/stc.1644
- Long-time storage effects on shape memory alloy wires 2017, https://doi.org/10.1007/s00707-017-1993-2
- Fatigue tests on SMA bars in span control vol.33, pp.4, 2011, https://doi.org/10.1016/j.engstruct.2010.12.045
- Investigation on the fatigue performance of Ni-Ti thin wires vol.24, pp.1, 2017, https://doi.org/10.1002/stc.1855
- Effect of hysteretic properties of SMAs on seismic behavior of self-centering concentrically braced frames 2017, https://doi.org/10.1002/stc.2110
- Mechanical properties and theoretical modeling of self-centering shape memory alloy pseudo-rubber vol.20, pp.11, 2011, https://doi.org/10.1088/0964-1726/20/11/115008
- Seismic response control of buildings with force saturation constraints vol.12, pp.2, 2013, https://doi.org/10.12989/sss.2013.12.2.157
- Shape memory alloys as an effective tool to damp oscillations vol.119, pp.3, 2015, https://doi.org/10.1007/s10973-015-4405-7
- Seismic Response Control Using Shape Memory Alloys: A Review vol.22, pp.14, 2011, https://doi.org/10.1177/1045389X11411220
- Local effects induced by dynamic load self-heating in NiTi wires of shape memory alloys 2017, https://doi.org/10.1002/stc.2134
- Experimental observations on mechanical response of three-phase NiTi shape memory alloy under uniaxial tension vol.3, pp.10, 2016, https://doi.org/10.1088/2053-1591/3/10/105701
- Advanced materials for control of post-earthquake damage in bridges vol.24, pp.2, 2015, https://doi.org/10.1088/0964-1726/24/2/025035
- On the NiTi wires in dampers for stayed cables vol.13, pp.3, 2014, https://doi.org/10.12989/sss.2014.13.3.353
- Characterization of NiTi Shape Memory Damping Elements designed for Automotive Safety Systems vol.23, pp.7, 2014, https://doi.org/10.1007/s11665-014-1045-1
- Cyclic mechanical properties of copper-based shape memory alloys: The effect of strain accommodation at grain boundaries vol.105, 2017, https://doi.org/10.1016/j.ijfatigue.2017.08.011
- Functional Fatigue of Polycrystalline Cu-Al-Mn Superelastic Alloy Bars under Cyclic Tension vol.28, pp.5, 2016, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001417
- High Cycle-life Shape Memory Polymer at High Temperature vol.6, pp.1, 2016, https://doi.org/10.1038/srep33610
- Dynamic analysis of a historical monument: retrofit using shape memory alloy wires vol.13, pp.3, 2014, https://doi.org/10.12989/sss.2014.13.3.375
- Experimental analyses of dynamical systems involving shape memory alloys vol.15, pp.6, 2015, https://doi.org/10.12989/sss.2015.15.6.1521
- Shape-memory alloys as macrostrain sensors vol.24, pp.1, 2017, https://doi.org/10.1002/stc.1860
- Seismic resilience timber connection-adoption of shape memory alloy tubes as dowels vol.24, pp.10, 2017, https://doi.org/10.1002/stc.1980
- Dynamic performance of a superelastic column-base connection vol.25, pp.7, 2018, https://doi.org/10.1002/stc.2186
- S-N curve fatigue study and the stress-strain properties on the refurbish NITI SMA for reinforcing bar in concrete vol.469, pp.1757-899X, 2019, https://doi.org/10.1088/1757-899X/469/1/012116
- Coupling shape-memory alloy and embedded informatics toward a metallic self-healing material vol.6, pp.9, 2010, https://doi.org/10.12989/sss.2010.6.9.1041
- Fatigue laboratory tests toward the design of SMA portico-braces vol.7, pp.1, 2010, https://doi.org/10.12989/sss.2011.7.1.041
- Energy-balance assessment of shape memory alloy-based seismic isolation devices vol.8, pp.4, 2011, https://doi.org/10.12989/sss.2011.8.4.399
- Seismic behavior of properly designed CBFs equipped with NiTi SMA braces vol.21, pp.4, 2010, https://doi.org/10.12989/sss.2018.21.4.479
- Temperature effect on seismic performance of CBFs equipped with SMA braces vol.22, pp.5, 2018, https://doi.org/10.12989/sss.2018.22.5.495
- Comparison of Bending Fatigue of NiTi and CuAlMn Shape Memory Alloy Bars vol.2020, pp.None, 2010, https://doi.org/10.1155/2020/8024803
- Experimental Study on Temperature Effects on NiTi Shape Memory Alloys under Fatigue Loading vol.13, pp.3, 2010, https://doi.org/10.3390/ma13030573
- Seismic vibration control of an innovative self-centering damper using confined SMA core vol.25, pp.2, 2010, https://doi.org/10.12989/sss.2020.25.2.241
- Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS): an engineering solution for practical aseismic isolation with advanced materials vol.26, pp.1, 2010, https://doi.org/10.12989/sss.2020.26.1.089