• Title/Summary/Keyword: In-Situ Soil

Search Result 758, Processing Time 0.024 seconds

Electrokinetic Ions Injection into Kaolinite and Sand for Bioremediation (카올리나이트와 모레에서의 Bioremediation을 위한 Electrokinetic 이온 주입 특성)

  • 이호창;한상재;김수삼;오재일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.405-410
    • /
    • 2001
  • Bioremediation is a degradation process of existing organic contaminants in soils and groundwater by indigenous or inoculated microorganisms. This process can provide economical solution as well as safe and effective alternative in remediation technologies. However, it has been suggested that the rate of bioremediation process of organic contaminants by microorganisms can be limited by the concentration of nutrients and TEAs(Terminal Electron Accepters). In in-situ bioremediation, conventional pumping techniques have been used for supplying these additives. However, the injection of these additives is difficult in low permeable soils, and also hindered by preferential flow paths resulting from heterogeneities in high permeable ground. Therefore, the Injection of chemical additives is the most significant concern in in-situ bioremediation. Most recently, electrokinetic technique has been applied into the bioremediation and the injection characteristics under electrokinetics have not been examined in various soil types. Therefore, in this study, electrokinetic injection method is investigated in kaolinite and sand, and the concentration of ammonium(nutrients) and sulfate(TEAs) in soil is presented.

  • PDF

A Study on the Basic Characteristics of In-situ Soil Flushing Using Surfactant (계면활성제를 이용한 원위치 토양세정 기법 적용을 위한 기초 특성 연구)

  • 최상일;소정현;조장환
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.87-91
    • /
    • 2002
  • Lab scale batch and column tests were performed to investigate the treatability of petroleum contaminated soil using the in-situ soil flushing method. The pyrex column (4.5$\times$25 cm) was used to investigate optimal washing agent, surfactant concentration, mixing ratio, and inlet velocity. The miked surfactant of $POE_{14}$ and SDS were determined as ideal systems for the batch tests. From the results of preliminary tests, mixed surfactant was found to be more harmful for microorganisms. So $POE_{5}$ and $POE_{14}$ were chosen as the surfactant system for the batch study. The washing efficiency for the diesel contaminated soil was increased until 1 %, and decreased after l %. When applied as selected mixed surfactant, the ideal mixed ratio was recognized as 1:1. Therefore we selected miked surfactant $POE_{5}$ and $POE_{14}$, surfactant concentration 1%, and mixed ratio 1:1 for the remediation of diesel contaminated soil. In column tests, the total removal efficiency was improved as the flux of washing agent was increased. At the same pore volume, small flux showed better removal efficiency.

A Study on the Applicability of Resistivity Cone for Contaminant Investigation in Farm Land (농경지 오염탐사를 위한 비저항콘의 적용성에 관한 연구)

  • Yu, Chan;Yoon, Chun-Gyeong
    • Journal of Korean Society of Rural Planning
    • /
    • v.5 no.1 s.9
    • /
    • pp.45-55
    • /
    • 1999
  • The applicability of resistivity cone for contaminant investigation in farm land was examined in laboratory and in-situ. To verify the resistivity variations in sand with contaminants, laboratory experiment used soil resistivity test box was performed. Heavy metal and others ions were appeared steep variations in low concentration. Pilot test results were the same as laboratory test results. In the in-situ test used resistivity cone, resistivities of waste landfill layer were low than the common soil layers and resistivities had been difference with concentration of contaminant components. Therefore contaminant investigation in farm land using resistivity cone was expected very effective.

  • PDF

BIOLOGICAL REMEDIATION OF CONTAMINATED AQUIFER (오염지하수출의 미생물학적 복원기술)

  • 배우근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.12a
    • /
    • pp.1-18
    • /
    • 1992
  • The contaminatlon of soil and groundwater by leachate from impmperly managed landfills, or by cheiicals and gasoline leaked flu underground storage tanks has buou a serious urldwide environmental problei. Most of those contaminants are adsorptive and absorptive into soul, while they are hardly soluble in water. Thus, the rate of self purification is very slow, causing persistent problems in water use and environmental protection when the contamination is left untreated. Biological remediatlon technologies utilize the ertraordlnary caperbllity of microorganisms In degrading a tilde spectrum of organic compounds. Among them, an in situ bioremediation technology Involves injection of supplementary materials into the subsurfce in order to bring about a significant Increase in the microbial activity. The Increased microbial activity helps remove the pollutants in situ, that is, without digging out contaminants, soil, or water. This paper focused on the features, possibilities, and limitations of the bioremedition technology.

  • PDF

현장공기분사공정법(IAS)을 이용한 공기 영향반경과 흐름 양상 연구

  • 이준호;박갑성
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.213-217
    • /
    • 2004
  • Laboratory scale study for an area of influence and flowing aspect of groundwater saturated zone was conducted for three sediment grains. On the AMG(Average Modal diameter Grains) 0.34, 1.38, 3.89mm diameter samples, the affected area of the aquifer were 15.2, 37.0, 30.0%/m2 each. Air flow for AMG 0.34mm diameter grain size provides indication of pattern of channelized air flow in saturated zone and expansion state in above saturated zone. For AMG of 1.38, 3.89mm diameter grains, air flow are pervasive air flow, forming a symmetrical cone of influence around the injection point. And also AMG 1.38, 3.89mm diameter samples show onset of collapse and approach to steady state in above saturated zone, respectively. In this study, optimal sites for in situ air sparging, may be grain diameters between about AMC 1.5~2.5mm diameter.

  • PDF

Treatment of Naphtalenes-Contaminated Soil by Surfactant/ Coagulant (계면활성제/응집제를 이용한 나프탈렌 오염토양 처리)

  • Park, Joon-Seok;Park, Jong-Un;Shin, Chul-Ho;Park, Hee-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.2
    • /
    • pp.82-90
    • /
    • 2004
  • This study was conducted to evaluate in situ soil flushing and coagulation for naphtalenes-contaminated soil remediation. Mixed-surfactant of 1% POE12 and 1% SDS (1 : 1 by volume basis) was used as a flushing solution. When 5 pore volumes of mixed -surfactant were added to soil column, the flushing efficiencies of 2-methylnaphtalene and 1,5-dimethylnaphtalene with about 1,500 mg/kg(dry soil) were approximately 80% and 60% respectively. In adding 13 pore volumes of mixed-surfactant, the flushing efficiencies of 2-methylnaphtalene and 1,5-dimethylnaphtalene were 90% and 82%. However, considering in situ soil flushing with distilled water, about 42% and 71% were flushed for 2-methylnaphtalene and 1,5-dimethylnaphtalene by surfactant-only. For about 10,000 mg/kg(dry soil) diesel-contaminated soil, 40% and 70% of TPH were flushed-out in 5 pore volumes and 13 pore volumes addition. However, for naphtalenes in diesel TPH, 90% of flushing efficiency was discovered in adding only 5 pore volumes of flushing solution. There was not discovered significant difference among coagulation efficiencies of 6 kinds of polymers, and the coagulation efficiencies were near 50%.

  • PDF

Evaluation of Remediation of Contaminated Soil Using PVDs (연직배수재를 이용한 오염도턍복원 특성 평가)

  • Shin, Eun-Chul;Park, Jeong-Jun;Roh, Jeong-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1400-1407
    • /
    • 2005
  • There are a number of approaches to in situ remediation that are used at contaminated sites for removing contaminants from the contaminated zone without excavating the soil. These include soil flushing, dual phase extraction, and soil vapor extraction. Of these techniques, soil flushing is the focus of the investigation in this paper. The concept of using prefabricated vertical drains(PVDs) for remediation of contaminated sites with fine-grained soils is examined. The PVD system is used to shorten the drainage path or the groundwater flow and promote subsurface liquid movement expediting the soil flushing process. The use of PVDs in the current state of practice has been limited to soil improvement. The use of PVDs under vacuum conditions is investigated using sample soil consisting of silty sand.

  • PDF

Analysis of the Factors Affecting Compressive Strength of Lightweight Foamed Soil (경량기포혼합토의 압축강도 영향인자 분석)

  • Song, Jun-Ho;Im, Jong-Chul;Kwon, Jung-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1069-1080
    • /
    • 2008
  • The mechanical characteristic of Lightweight Foamed Soil(LWFS) are investigated in this research. LWFS is composed of the in-suit soil, cement and foam to reduce the unit-weight and increase compressive strength. The unconfined compressive tests are carried out on the prepared specimens of LWFS with various soil types to investigate the relationship between compressive strength of LWFS and physical properties of soil. The result indicate that coefficient of gradation($C_g$) and liquid limit(LL) are more important factor affecting compressive strength than other physical properties of soil and coefficient of gradation($C_g$) and liquid limit(LL) can standard to determine the optical soil among the in-situ soils for LWFS.

  • PDF

Shear Load Transfer Characteristics of Drilled Shafts in Weathered Rocks (풍화암에 근입된 현장타설 말뚝의 하중 전이 특성)

  • Jeong, Sang-Seom;Cho, Sung-Han;Kim, Soo-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03a
    • /
    • pp.85-106
    • /
    • 2000
  • The load distribution and deformation of drilled shafts subjected to axial loads were evaluated by a load transfer approach. The emphasis was on quantifying the load transfer mechanism at the interface between the shafts and surrounding highly weathered rocks based on a numerical analysis and small-scale tension load tests performed on nine instrumented piles. An analytical method that takes into account the soil coupling effect was developed using a modified Mindlin's point load solution. Based on the analysis, a single-modified hyperbolic model is proposed for the shear transfer function of drilled shafts in highly weathered rocks. Through comparisons with field case studies, it is found that the prediction by the present approach is in good agreement with the general trend observed by in-situ measurements.

  • PDF

Improvement of Shallow Soil Using Electric Heating Equipment (전기가열장치를 이용한 표층지반개량)

  • Park, Min-Cheol;Im, Eun-Sang;Shin, Beck-Chul;Han, Heui-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.41-54
    • /
    • 2012
  • This paper is to develop the method of surface soil improvement by electric heating equipment. For this purpose, the electric heating systems were invented to apply to the in-situ soil. Iaboratory tests were done to study the behaviors of sea clays by eletric heating. In lab tests, two different heating temperatures, $70^{\circ}C$ and $110^{\circ}C$, were applied to the saturated clays to examine the relationship between evaporation and compaction. In addition, trafficability was analyzed to the heated by applying cone penetrometer to the heated clays Furthermore, in-situ tests were conducted to analyze the range of soil improvement and strength variations. The temperature changes in field were measured and they were compared with those of the commercial program (Temp/W). Also, the bearing capacities of electrically heated field were tested by PBT (plate bearing test). Several conclusions were derived from the results of the numerical analysis and tests (lab and field). The improvement ranges and strength variations of electrically heated soil depended on the heating temperature and time. If the heating temperature is more than $100^{\circ}C$ evaporating the ground water, the bearing capacity and settlement increased rapidly. The bearing capacities of in-situ soil increased more than 3 times, and heated soil emitted a lot of vapors. The soil around electric heater was sintered completely, and its range was almost 20 cm.