• 제목/요약/키워드: In vitro regeneration

검색결과 530건 처리시간 0.031초

Anti-inflammatory effect of (-)-epigallocatechin-3-gallate on Porphyromonas gingivalis lipopolysaccharide-stimulated fibroblasts and stem cells derived from human periodontal ligament

  • Jung, Im-Hee;Lee, Dong-Eun;Yun, Jeong-Ho;Cho, Ah-Ran;Kim, Chang-Sung;You, Yoon-Jeong;Kim, Sung-Jo;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제42권6호
    • /
    • pp.185-195
    • /
    • 2012
  • Purpose: (-)-epigallocatechin-3-gallate (EGCG) has been reported to exert anti-inflammatory and antibacterial effects in periodontitis. However, its exact mechanism of action has yet to be determined. The present in vitro study evaluated the anti-in-flammatory effects of EGCG on human periodontal ligament fibroblasts (hPDLFs) and human periodontal ligament stem cells (hPDLSCs) affected by bacterial lipopolysaccharide (LPS) extracted from Porphyromonas gingivalis. Methods: hPDLFs and hPDLSCs were extracted from healthy young adults and were treated with EGCG and/or P. gingivalis LPS. After 1, 3, 5, and 7 days from treatment, cytotoxic and proliferative effects were evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and bromodeoxyuridine assay, respectively. And then, the gene expressions of hPDLFs and hPDLSCs were observed for interleukin (IL)-$1{\beta}$, IL-6, tumor necrosis factor (TNF)-${\alpha}$, osteoprotegerin (OPG), receptor activator of nuclear factor kappa-B ligand (RANKL), and RANKL/OPG using real-time polymerase chain reaction (PCR) at 0, 6, 24, and 48 hours after treatment. The experiments were performed with the following groups for hPDLFs and hPDLSCs; 1) No treat, 2) EGCG alone, 3) P. gingivalis LPS alone, 4) EGCG+P. gingivalis LPS. Results: The 20 ${\mu}M$ of EGCG and 20 ${\mu}g/mL$ of P. gingivalis LPS had the lowest cytotoxic effects, so those concentrations were used for further experiments. The proliferations of hPDLFs and hPDLSCs increased in all groups, though the 'EGCG alone' showed less increase. In real-time PCR, the hPDLFs and hPDLSCs of 'EGCG alone' showed similar gene expressions to those cells of 'no treat'. The gene expressions of 'P. gingivalis LPS alone' in both hPDLFs and hPDLSCs were highly increased at 6 hours for IL-$1{\beta}$, IL-6, TNF-${\alpha}$, RANKL, and RANKL/OPG, except the RANKL/OPG in hPDLSCs. However, those increased gene expressions were down-regulated in 'EGCG+P. gingivalis LPS' by the additional treatment of EGCG. Conclusions: Our results demonstrate that EGCG could exert an anti-inflammatory effect in hPDLFs and hPDLSCs against a major pathogen of periodontitis, P. gingivalis LPS.

Plant Regeneration from Hypocotyl Explants of Several Species of Lycopersicon (토마토속 식물의 배축절편 배양에 의한 식물체 재분화)

  • 임학태;이건섭;용영록;송융남;김종화
    • Korean Journal of Plant Tissue Culture
    • /
    • 제21권3호
    • /
    • pp.137-143
    • /
    • 1994
  • In an attempt to optimize the in vitro-regeneration conditions necessary for the genetic manipulation of tomato species, we examined several hybrid lines and wild species (peruvianum, pimpinellifolium, glandulosum) of Lycopersicon for. their, different regeneration ability. The basal medium used for callus growth and organogenesis was MSB (MS + B5) supplemented with three combinations of TDZ (Thidiazuron) 0.5mg/L+NAA 0.5mg/L, BA 2.0mg/L+NAA0.05 mg/L, and zeatin 3.0 mg/L + IAA 0.02 mg/L. In the genotype of Lycopenicon grandulosum, combination of TDZ and NAA was more effective in inducing shoot and root differentiation than those of BA and NAA or zeatin and IAA. When all genotypes tested were considered, however combination of zeatin and IAA was shown to be the best in shoot regeneration. Result indicate that callus and organogenesis of Lycopenicon species are dependent upon the hormone types and plant genotypes, but MSB medium with zeatin 3.0 mg/L + IAA 0.02 mg/L maybe appropriate for genotype-independent plant regeneration system of Lycopercicon species. We also tried TDZ as a cytokinin source in tomato tissue culture and found it highly significant in tomato regeneration system.

  • PDF

A Study on Fabrication of 3D Dual Pore Scaffold by Fused Deposition Modeling and Salt-Leaching Method (열 용해 적층법과 염 침출법을 이용한 3 차원 이중 공 인공지지체 제작에 관한 연구)

  • Shim, Hae-Ri;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제39권12호
    • /
    • pp.1229-1235
    • /
    • 2015
  • Scaffold fabrication technology using a 3D printer was developed for damaged bone tissue regeneration. A scaffold for bone tissue regeneration application should be biocompatible, biodegradable, and have an adequate mechanical strength. Moreover, the scaffold should have pores of satisfactory quantity and interconnection. In this study, we used the polymer deposition system (PDS) based on fused deposition modeling (FDM) to fabricate a 3D scaffold. The materials used were polycaprolactone (PCL) and alginic acid sodium salt (sodium alginate, SA). The salt-leaching method was used to fabricate dual pores on the 3D scaffold. The 3D scaffold with dual pores was observed using SEM-EDS (scanning electron microscope-energy dispersive spectroscopy) and evaluated through in-vitro tests using MG63 cells.

Factors Affected on Plant Regeneration of Phyllitis scolopendrium (L.) Newm. In vitro (기내에서 변산일엽의 식물체 재생에 영향을 미치는 요인들)

  • Jeong Jin-A;Lee Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • 제19권2호
    • /
    • pp.365-373
    • /
    • 2006
  • This study was conducted to develop the efficient propagation method of fern Phyllitis scolopendrium using In vitro culture. The influence of the origin of the donor explant sources (rhizome, stipe, three parts of blade) and the homogenization of explants was investigated. Rhizome and stipe explants showed the organogenic capacity among the five explant sources and plant regeneration was promoted by homogenization of culture material. Optimum condition for vigorous and excellent growth of multiple shoots was the half-strength MS medium with 1% sucrose concentration. Generally, addition of $NaH_2PO_4$ to media enhanced shoot multiplication. The highest rate of shoot proliferation was observed on the media containing $5{\mu}M$ NAA. Also, combination of activated charcoal $(0.1{\sim}0.2%)$ and growth regulators to growth medium prevented the formation of multiple bud primordia, 'nodule'-like bud clusters and improved the normal morphogenesis of sporopytes in P. scolopendrium.

Comparison of Regeneration Conditions in Seven Pepper (Capsicum annuum L.) Varieties (7종의 고추(Capsicum annuum L.) 재분화 조건 비교)

  • Min-Su Kim;Yun-Jeong Han;Sharanya Tripathi;Jinwoo Kwak;Jin-Kyung Kwon;Byoung-Cheorl Kang;Jeong-Il Kim
    • Korean Journal of Plant Resources
    • /
    • 제36권5호
    • /
    • pp.527-539
    • /
    • 2023
  • Pepper (Capsicum annuum L.) is an important vegetable and spice crop that has been cultivated worldwide. Pepper fruits have unique taste and aroma, providing a variety of antioxidants and compounds important for human health, which makes a high economic value. In addition, there is a high demand for new pepper varieties, according to consumer's preference. However, pepper is a recalcitrant plant for in vitro tissue and organ differentiation and plant regeneration, which makes it difficult to develop demanded varieties using newly developed technologies such as genetic engineering and gene editing. In this study, tissue culture and regeneration conditions were investigated using seven pepper varieties that were obtained from the core-collection of Seoul National University. We observed callus and bud induction and shoot formation using several media composition composed of different cytokinins and auxin concentrations. As a result, it was found that there were differences in callus induction and shoot formation of each variety depending on the hormone composition, and the highest regeneration was shown when the medium containing Zeatin Riboside and the petioles of seedlings were used. In particular, out of seven pepper varieties, CMV980 exhibited a higher regeneration efficiency (approximately 48%) than other varieties, followed by Yuwolcho. Therefore, this study provides CMV980 and Yuwolcho as good candidates that can be used for pepper transformation, which might contribute to the development of various varieties through gene editing technology in the future.

Optimal concentrations of plant growth regulators and AgNO3 for the improvement of regeneration efficiency in Chrysanthemum morifolium 'Ohblang' (국화 '오블랑'의 재생 효율 증진을 위한 식물생장조절제와 AgNO3 적정 농도 선별)

  • Yeo Jin Youn;Yong Joon Yang
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.169-175
    • /
    • 2023
  • A plant regeneration system was developed through shoot organogenesis from in vitro leaf explants of Chrysanthemum morifolium 'Ohblang'. The effects of different concentrations of plant growth regulators and AgNO3 on efficient shoot regeneration and inhibition of browning were evaluated in chrysanthemum. The explants were cultured on MS shoot induction medium supplemented with 12 combination treatments of 6-benzyladenine (BA) 0.5, 1.0 and 2.0 mg/L, and α-naphthaleneacetic acid (NAA) 0.2, 0.5, 1.0 and 2.0 mg/L in darkness for 6 weeks and cultured under a 16/8 h photoperiod for 6 weeks. The highest shoot regeneration was obtained from the explants cultured on the medium with 1.0 mg/L BA and 1.0 mg/L NAA. Based on this result, AgNO3 was added to a shoot induction medium containing MS salts, vitamins, 1.0 mg/L BA, 1.0 mg/L NAA, 30 g/L sucrose, and 6 g/L agar to reduce browning of chrysanthemum leaf explants. In the control treatment without AgNO3, leaf explants turned brown at the cut edge; however, browning was not observed in AgNO3 treatments. Shoot organogenesis was higher at low concentrations of AgNO3 and decreased with an increase in AgNO3 concentration. The explants cultured on shoot induction medium (MS salts, vitamins, 1.0 mg/L BA, 1.0 mg/L NAA) with 1 mg/L of AgNO3 produced the highest shoot regeneration with 2.6 shoots per explants and a browning index of 0.7. When the regenerated shoots were detached from the explants and cultured on MS medium, the shoots were elongated and rooted successfully.

Bioactive characteristics of an implant surface coated with a pH buffering agent: an in vitro study

  • Pae, Hyung-Chul;Kim, Su-Kyoung;Park, Jin-Young;Song, Young Woo;Cha, Jae-Kook;Paik, Jeong-Won;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제49권6호
    • /
    • pp.366-381
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the effectiveness of conventional sandblasted, large-grit, acid-etched (SLA) surface coated with a pH buffering solution based on surface wettability, blood protein adhesion, osteoblast affinity, and platelet adhesion and activation. Methods: Titanium discs and implants with conventional SLA surface (SA), SLA surface in an aqueous calcium chloride solution (CA), and SLA surface with a pH buffering agent (SOI) were prepared. The wetting velocity was measured by the number of threads wetted by blood over an interval of time. Serum albumin adsorption was tested using the bicinchoninic acid assay and by measuring fluorescence intensity. Osteoblast activity assays (osteoblast adhesion, proliferation, differentiation, mineralization, and migration) were also performed, and platelet adhesion and activation assays were conducted. Results: In both the wetting velocity test and the serum albumin adsorption assay, the SOI surface displayed a significantly higher wetting velocity than the SA surface (P=0.000 and P=0.000, respectively). In the osteoblast adhesion, proliferation, differentiation, and mineralization tests, the mean values for SOI were all higher than those for SA and CA. On the osteoblast migration, platelet adhesion, and activation tests, SOI also showed significantly higher values than SA (P=0.040, P=0.000, and P=0.000, respectively). Conclusions: SOI exhibited higher hydrophilicity and affinity for proteins, cells, and platelets than SA. Within the limits of this study, it may be concluded that coating an implant with a pH buffering agent can induce the attachment of platelets, proteins, and cells to the implant surface. Further studies should be conducted to directly compare SOI with other conventional surfaces with regard to its safety and effectiveness in clinical settings.

Effect of Antibiotics and Herbicide on Shoot Regeneration from Cotyledon and Hypocotyl Explants of Chinese Cabbage (항생제와 제초제가 배추 자엽 및 배축 절편체로부터의 신초 형성에 미치는 영향)

  • Kang, Byung-Kook;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • 제19권1호
    • /
    • pp.17-21
    • /
    • 2001
  • To develop a selection system for regenerating plants from transformed tissues, effects of four antibiotics (kanamycin, hygromycin, carbenicillin, cefotaxime) and herbicide (phosphinotricin) on shoot regeneration from cotyledon and hypocotyl explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis) were studied. For cotyledon, shoot induction was not significantly affected by kanamycin at $1mg{\cdot}L^{-1}$, but the number of shoots formed was significantly reduced at $2mg{\cdot}L^{-1}$, and no shoots were regenerated from any explants at $6mg{\cdot}L^{-1}$ or higher. Hypocotyl explants showed similar result as cotyledon. Kanamycin at $7mg{\cdot}L^{-1}$ may be adequate for selecting Chinese cabbage transformants. Hygromycin at $4mg{\cdot}L^{-1}$ or higher completely inhibited the growth and shoot regeneration of Chinese cabbage explants. Therefore, resistance gene to hygromycin may also be used as a selective marker for Chinese cabbage transformation. Carbenicillin and cefotaxime, the cephalosporin type of antibiotics, had little effect on shoot regeneration of Chinese cabbage explants. Since carbenicillin and cefotaxime have low toxicity to Chinese cabbage, they are suitable for use in tissue culture to eliminate Agrobacterium in transformation experiments after co-cultivation. Shoot regeneration from cotyledon and hypocotyl explants was significantly reduced in presence of $1mg{\cdot}L^{-1}$ phosphinotricin (PPT) and completely inhibited by $2mg{\cdot}L^{-1}$ or higher. PPT, same as antibiotics, may also be used to select transformed cells. Since Chinese cabbage is known to be recalcitrant to in vitro shoot regeneration compared to other Brassica species, even though lower levels of selectable markers result in more transformants but simultaneously allow more untransformed escapes to develop, lower levels of antibiotics and herbicides could be successfully used as a selectable marker to reduce selection pressure.

  • PDF

Developmental and Structural Diversity of Regenerated Plants in Cell and Tissue Cultures (세포조직배양계에서 재생된 식물의 발생 및 형태학적 다양성)

  • 소웅영
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 한국식물학회 1993년도 제7회 식물생명공학 심포지움 식물 세포 분화의 분자적 접근 Seventh Symposium on Plant Biotechnology -Approach to Plant Cell Differentiation-
    • /
    • pp.1-36
    • /
    • 1993
  • It is possible to regenerate plants from calli, single cells and protoplasts of numerous species via organogenasis or embryogenesis in cell and tissue culture systems. Also such regeneration of plants can directly occur from cells of explants. However certain plant species has not been yet provided cultures suitable for plant regeneration from cells or tissues. For example, we have to confirm the regenerability of plant from cells before preparing transformed cells for application. Even more, it is very important to notice that regenerated plants in cell and tissue cultures often show structural abnormality. The mojority of those plants is functionally disordered and eventually cases degenerated. One of such examples is vitreous plants which are manifested mainly in the leaves and manifesteds to a lesser extent in the stems and roots. Regenerants in suspension cultures show more frequent vitrification than on gelled media so that relative humidity and water potential are the key factors involved in abnormal morphogenesis in vitro. The other is that somatic embryos formed in media containing BAP or high concentration of sucrose show frequently cotyledon aberrancy such as polycotyledon and born type cotyledon. The embryos with aberrant cotyledon of Codonopsis lanceolata could not germinate or regenerate into plants in many cases. In contrast, the polycotyledon embryos of Aralia cordata germinated in higher percentage than two cotyledonary embryos, but horn type cotyledonary embryos rarely germinated. The major cause of poor germination is the abnormal development of plumule apex meristem.

  • PDF

Establishment of Validation Methods to Test the Biocompatibility of Titanium Dioxide

  • Kim, Mi-Ju;Lim, Hee-Joung;Lee, Byung Gun;Kim, Jong-Hoon;Choi, Jinsub;Kang, Hee-Gyoo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1857-1863
    • /
    • 2013
  • Most of biomaterials come in direct contact with the body, making standardized methods of evaluation and validation of biocompatibility an important aspect to biomaterial development. However, biomaterial validation guidelines have not been fully established, until now. This study was to compare the in vitro behavior of osteoblasts cultured on nanomaterial $TiO_2$ surfaces to osteoblast behavior on culture plates. Comparisons were also made to cells grown in conditioned media (CM) that creates an environment similar to the in vivo environment. Comparisons were made between the different growth conditions for osteoblast adhesion, proliferation, differentiation, and functionality. We found that the in vivo-like system of growing cells in concentrated CM provided a good validation method for biomaterial development and in vivo implant therapy. The $TiO_2$ materials were biocompatible, showing similar behavior to that observed in vivo. This study provided valuable information that would aid in the creation of guidelines into standardization and evaluation of biocompatibility in $TiO_2$ biomaterials.