• Title/Summary/Keyword: In vitro regeneration

Search Result 530, Processing Time 0.027 seconds

Selection of Rice Primary Pollen Callus with Improved Cold Tolerence (벼 꽃가루 캘러스의 저온처리에 의한 내연성 기내선발)

  • 양세준;오병근
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.1
    • /
    • pp.35-39
    • /
    • 1994
  • Is obtain cell lines showing high level of rice cold tolerance, direct in vitro selection through cold stress on primary pollen callus derived from anther culture was carried out Genotypic difference in callus formation and plant regeneration was recognized Rates of albino was increased along the duration of cold stress. Reciprocal effects were not noticed in anther culturability There was no variants related to rice leaf discoloration in pollen derived lines from parental varieties, regardless of days of cold stress. The regeneration and recombination of rice leaf discoloration in 146 pollen-derived lines, 70 pollen-derived lines from cold stress at $0^{\circ}C$ for 10 days, and 830 F$_2$ plants presented normal distribution curves with skewness in tolerance and no significant difference among 3 populations. Direct in vitro selection for rice cold tolerance through cold stress on primary pollen callus derived from anther culture, therefore, was revealed ineffective as a in vitro technology.

  • PDF

Regeneration and Acclimatization of Regenerants in Long-term in vitro Culture of Japanese Blood Grass (Imperata cylindrica 'Rubra')

  • Eon-Yak Kim;In-Jin Kang;Ye-Jin Lee;Baul Yang;Vipada Kantayos;Chang-Hyu Bae
    • Korean Journal of Plant Resources
    • /
    • v.36 no.6
    • /
    • pp.588-596
    • /
    • 2023
  • Long-term culture of cell lines is an important issue in in vitro culture and in plant science. In this study, the regeneration ability and ex vitro acclimatization of regenerants were evaluated. The ploidy level of regenerants derived from long-term cultured cell lines was measured in Imperata cylindrica 'Rubra', Poaceae. Adventitious buds (shoots) were successfully induced from five-year-cultured calli on MS medium containing 0.1 mg/L BA or 2.0 mg/L TDZ, combined with 0.01 mg/L auxins (IAA, IBA, NAA and 2,4-D), respectively. Adventitious roots were also induced on MS medium containing 0.01 mg/L auxins (IBA, NAA and 2,4-D), respectively. Interestingly, regenerants with both red and green leaf were successfully obtained when regenerants were cultured on MS medium with 9% sucrose. Regenerants derived from long-term cultured calli were transferred to pots using an optimal acclimatization process and successfully adapted to both pot and soil conditions. Moreover, the ploidy level was measured using calli and regenerants that had been kept on MS medium containing various kinds of plant growth regulators (PGRs).

In vitro plantlet regeneration of "dwarf" Indian olive (Elaeocarpus robustus Roxb.): a fruit plant of Bangladesh

  • Rahman, Md. Mahabubur;Amin, Muhammad Nurul;Ishiguri, Futoshi;Yokota, Shinso;Sultana, Rubaiyat Sharmin;Takashima, Yuya;Iizuka, Kazuya;Yoshizawa, Nobuo
    • Plant Biotechnology Reports
    • /
    • v.3 no.3
    • /
    • pp.259-266
    • /
    • 2009
  • A plantlet regeneration protocol was developed on pot-grown mature plants of Elaeocarpus robustus Roxb. cv. Dwarf from nodal and leaf explants. The best yield of adventitious shoots was achieved from the leaf-derived calli in a modified MS ($MMS_1$, half strength of major salts, full strength of minor salts, and vitamins) medium containing $4.0{\mu}M$ BA + $4.0{\mu}M$ Kn + $0.5{\mu}M$ NAA + 15% coconut water (CW). The shoot multiplication rate was amplified about twofold per culture after the addition of 15% CW to the medium. The rate of shoot multiplication reached maximum at the 5th subculture, and it maintained this rate throughout the 3 subsequent subcultures. The best rooting in vitro was investigated by subculturing the microcuttings in an $MMS_2$ (half strength of both major salts and minor salts and full strength of vitamins) medium containing $1.0{\mu}M$ IBA in the dark for one initial week at $30^{\circ}C$, followed by subculturing them in a plant-growth regulator (PGR)-free medium in the light. The plantlets raised in vitro were successfully established under ex vitro conditions.

Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: in vitro and in vivo studies

  • Zhang, Ting;Zhang, Xinwei;Mao, Mengyun;Li, Jiayi;Wei, Ting;Sun, Huiqiang
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.6
    • /
    • pp.392-405
    • /
    • 2020
  • Purpose: Titanium implants are widely used in the treatment of dentition defects; however, due to problems such as osseointegration failure, peri-implant bone resorption, and periimplant inflammation, their application is subject to certain restrictions. The surface modification of titanium implants can improve the implant success rate and meet the needs of clinical applications. The goal of this study was to evaluate the effect of the use of porous titanium with a chitosan/hydroxyapatite coating on osseointegration. Methods: Titanium implants with a dense core and a porous outer structure were prepared using a computer-aided design model and selective laser sintering technology, with a fabricated chitosan/hydroxyapatite composite coating on their surfaces. In vivo and in vitro experiments were used to assess osteogenesis. Results: The quasi-elastic gradient and compressive strength of porous titanium implants were observed to decrease as the porosity increased. The in vitro experiments demonstrated that, the porous titanium implants had no biological toxicity; additionally, the porous structure was shown to be superior to dense titanium with regard to facilitating the adhesion and proliferation of osteoblast-like MC3T3-E1 cells. The in vivo experimental results also showed that the porous structure was beneficial, as bone tissue could grow into the pores, thereby exhibiting good osseointegration. Conclusions: Porous titanium with a chitosan/hydroxyapatite coating promoted MC3T3-E1 cell proliferation and differentiation, and also improved osseointegration in vitro. This study has meaningful implications for research into ways of improving the surface structures of implants and promoting implant osseointegration.

Effects of Several Additives on Plant Regeneration from Leaf Disc Culture of Solanum tuberosum L. (감자의 잎 절편 배양시 몇 가지 배지의 첨가물이 식물체 재분화에 미치는 영향)

  • Choi, Kyung-Hwa;Jeon, Jae-Heung;Kim, Hyun-Soon;Jung, Young-Hee;Jung, Hyuk
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.1
    • /
    • pp.49-52
    • /
    • 1997
  • The effects of several additives on plant regeneration were investigated from leaf disc culture of S. tuberosum cv. Atlantic which is known as poor in regeneration ability. The presence of 2 g/L casein hydrolysate significantly enhanced shoot regeneration. Addition of 10~20 $\mu$M $AgNO_3$, not only increased the frequency of shoot regeneration but also maintained the leaf disc green presumably by the inhibitory action of ethylene accumulation in vitro. Decrease of sucrose levels to below 3% significantly increased the degree of regeneration. The addition of CuSO$_4$had no effect on shoot regeneration.

  • PDF

Plant regeneration through multiple-shoot induction and ex vitro rooting in Vaccinium oldhamii Miq. (정금나무(Vaccinium oldhamii Miq.)의 다신초 유도 및 기외발근을 통한 식물체 재분화)

  • Yun, Ayoung;Kim, Tae Dong;Kim, Ji Ah;Lee, Na Nyum;Cheong, Eun Ju;Kim, Yong Wook
    • Journal of Plant Biotechnology
    • /
    • v.49 no.1
    • /
    • pp.82-89
    • /
    • 2022
  • In vitro techniques were developed for propagating Vaccinium oldhamii using shoots with apical buds. Explants having an apical bud were cultured on Murashige and Skoog (MS) medium supplemented with 1.0, 2.0, and 5.0 mg/L of each zeatin, thidiazuron, 6-benzylaminopurine (BA), and 6-(γ,γ-dimethylallylamino)purine (2-iP) in order to induce multiple shoots. Among the tested treatments, the 2.0 mg/L of 2-iP proved to be most suited for the multiplication and growth of shoots; the multiple shoot induction rate was 100.0%, the average number of shoots was 7.4 per explant, and the average shoot length was 51.7 mm. The in vitro elongated shoots were rooted on half-strength MS medium containing various concentrations of indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA). However, overall callus overgrowth was observed in all treatments and resulted in necrosis and abnormal shoot growth in root formation. A low concentration (0.5 mg/L) of IBA was appropriate for normal root development and the in vitro rooting rate was 30%. Ex vitro treatments on root formation using various concentrations of IBA with Talc powder and two types of rooting substrates (Flexi-Plugs or Horticultural soil) were examined. The ex vitro rooting rate (80%) and length of roots (32.9 mm) were obtained when the cut ends of the shoots were treated with 1.0 mg/L IBA and cultivated in Horticultural soil for 2 months. These findings suggest that ex vitro rooting is the more effective method for improving root formation in Vaccinium oldhamii than in vitro rooting.

Visualization of the physical characteristics of collective myoblast migration upon skeletal muscle injury and regeneration environment (골격근 손상 및 재생 환경에서의 근육 세포 군집 이동의 물리적 특성 가시화)

  • Kwon, Tae Yoon;Jeong, Hyuntae;Cho, Youngbin;Shin, Jennifer H.
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.70-77
    • /
    • 2022
  • Skeletal muscle tissues feature cellular heterogeneity, including differentiated myofibers, myoblasts, and satellite cells. Thanks to the presence of undifferentiated myoblasts and satellite cells, skeletal muscle tissues can self-regenerate after injury. In skeletal muscle regeneration, the collective motions among these cell types must play a significant role, but little is known about the dynamic collective behavior during the regeneration. In this study, we constructed in vitro platform to visualize the migration behavior of skeletal muscle cells in specific conditions that mimic the biochemical environment of injured skeletal muscles. We then visualized the spatiotemporal distribution of stresses arising from the differential collectiveness in the cellular clusters under different conditions. From these analyses, we identified that the heterogeneous population of muscle cells exhibited distinct collective migration patterns in the injury-mimicking condition, suggesting selective activation of a specific cell type by the biochemical cues from the injured skeletal muscles.

Foliar Micromorphological Response of In Vitro Regenerated and Field Transferred Plants of Oldenlandia umbellata L.: A Medicinal Forest Plant

  • Jayabal, Revathi;Rasangam, Latha;Mani, Manokari;Shekhawat, Mahipal Singh
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • Plant tissue culture techniques offer quick methods of regeneration of plants of medicinal importance but the survival chances of such plants are always questionable when shifted to the in vivo conditions. The present study enumerates the micromorphological developments in the leaves of in vitro regenerated and field transferred plantlets of Oldenlandia umbellata. The leaves developed in vitro after $4^{th}$ subcultures of multiplication phase and after 6 weeks of field transferred plants were used. Statistically significant differences in the number of stomata, veins, raphides, crystals and trichome density per square mm were observed. The improvements in stomatal apparatus and density (decreased from 41.85 to 32.20), developments in leaf architectural parameters and emergence of defense mechanism through increased numbers of raphides (8 to 15), crystals and trichomes (13.5 to 18.2) proved acclimation of tissue culture raised plantlets from in vitro to the in vivo environments lead to 100 % success in field establishment of the plantlets. The in vitro induced foliar abnormalities (changes in stomata, venation pattern, vein density, trichomes, crystals etc.) were repaired while hardening of plantlets in the greenhouse and finally in the field. The observed micromorphological response of leaves under altered environmental conditions could help in determination of proper stage of field transfer and prediction of survival percentage of in vitro regenerated O. umbellata plantlets.

Stem cell-derived exosomes for dentin-pulp complex regeneration: a mini-review

  • Dina A. Hammouda;Alaa M Mansour;Mahmoud A. Saeed;Ahmed R. Zaher;Mohammed E. Grawish
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2023
  • This mini-review was conducted to present an overview of the use of exosomes in regenerating the dentin-pulp complex (DPC). The PubMed and Scopus databases were searched for relevant articles published between January 1, 2013 and January 1, 2023. The findings of basic in vitro studies indicated that exosomes enhance the proliferation and migration of mesenchymal cells, as human dental pulp stem cells, via mitogen-activated protein kinases and Wingless-Int signaling pathways. In addition, they possess proangiogenic potential and contribute to neovascularization and capillary tube formation by promoting endothelial cell proliferation and migration of human umbilical vein endothelial cells. Likewise, they regulate the migration and differentiation of Schwann cells, facilitate the conversion of M1 pro-inflammatory macrophages to M2 anti-inflammatory phenotypes, and mediate immune suppression as they promote regulatory T cell conversion. Basic in vivo studies have indicated that exosomes triggered the regeneration of dentin-pulp-like tissue, and exosomes isolated under odontogenic circumstances are particularly strong inducers of tissue regeneration and stem cell differentiation. Exosomes are a promising regenerative tool for DPC in cases of small pulp exposure or for whole-pulp tissue regeneration.

De novo Regeneration of Fertile Common Bean (Phaseolus vulgaris L.) Plants

  • Albino Margareth M.C.;Vianna Giovanni R.;Falcao Rosana;Aragao Francisco J.L.
    • Journal of Plant Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.267-272
    • /
    • 2005
  • Common bean (Phaseolus vulgaris L.) plants were regenerated via organogenesis from mature embryonic axes, cultured on MS medium supplemented with ildole-3-ecetic acid (IAA) and thidiazuron (TDZ) for one week in the dark. Embryonic axillary regions were excised, longitudinally cut to split the both sides, and cultured for two weeks on MS medium supplemented with IAA and TDZ. The combination 0.5 mg $l^{-1}$ TDZ/0.5 mg $l^{-1}$ IAA presented the higher efficiency in shoot regeneration and the combination 0.5 mg $l^{-1}$ TDZ/0.25 mg $l^{-1}$ IAA presented the higher efficiency in conversion of shoots to plants. Regenerating explants were transferred to MS medium containing 1 mg $l^{-1}$ BAP for shoot development. All elongated shoots were rooted in vitro, presented normal phenotype and produced viable seeds. Histological analysis confirmed the mode of regeneration as de novo shoot organogenesis.