• Title/Summary/Keyword: In Orbit Test(IOT)

Search Result 17, Processing Time 0.028 seconds

Validation on Solar-array Drive Assembly of GEO-KOMPSAT-2A Through In-orbit Operation (천리안2A호 태양전지판구동기 궤도상 운영 검증)

  • Park, Young-Woong;Park, Keunjoo;Park, Bong-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.283-288
    • /
    • 2019
  • In this paper, there is summarized the validation of ground test results through the telemetry acquired during on-orbit initial activation on solar-array drive assembly(SDA) of GK2A launched at Dec-5, 2018. Especially, the decision logic of SDA initial position and the compensation logic are validated and confirmed. The SDA initial position is needed when GK2A enter to geostationary orbit from transfer orbit and the compensation logic is for the accumulated position error due to the open-loop control. Up to now, it is normal operating. Also the periodic offset between the geostationary orbit and Sun position is found that it is not checked on design phase, and then the proper threshold value is applied.

Scan Mirror Emissivity Compensation for the COMS MI (천리안위성 기상탑재체의 스캔미러 방사율 보정)

  • S대, Seok-Bae;Jin, Kyoung-Wook;Ahn, Sang-Il
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.156-166
    • /
    • 2011
  • COMS (Communication Ocean and Meteorological Satellite), the Korea's first geostationary Earth observation satellite, started to operate 24 hours to observe Land/Ocean/Atmosphere with the MI (Meteorological Imager) and GOCI (Geostationary Ocean Color Imager). After the successful completion of the IOT (In-Orbit Test), the satellite is in normal operation from April of 2011. This paper describes an algorithm for scan mirror emissivity compensation of the COMS MI and its software implementation.

Graphics Processing Units 를 활용한 위성 임무스케줄링 기법 고안 시 고려사항

  • Lee, Su-Jeon;Lee, Byeong-Seon;Kim, Jae-Hun;Jo, Yeong-Min
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.24.2-24.2
    • /
    • 2011
  • 천리안위성은 2010년 6월 27일에 발사되어 성공적으로 In Orbit Test (IOT)를 수행하고 있다. 천리안 위성을 지상에서 컨트롤 하기 위하여 ETRI 에서는 위성관제시스템을 개발하였으며, 현재 KARI에서 위성관제시스템을 운영중이다. 위성관제시스템의 일부인 임무계획 시스템은 기상/해양 이미지 촬영에 관한 임무요청, 위성체 기동 요청, 각동 이벤트 등을 종합하여 충돌 없는 임무스케줄을 만들어내게 되는데 이에 복잡한 스케줄링 기법이 요구된다. 천리안 위성의 임무 스케줄링 기법은 CPU 연산을 기본으로 하고 있으나, 이 논문에서는 Graphics Processing Units(GPU) 를 통한 임무 스케줄링 기법의 적용에 따르는 고려사항을 설명한다. 그리고 CPU 기반의 임무 스케줄링 기법과 GPU 기반의 임무 스케줄링 기법의 장단점을 분석한다.

  • PDF

Attitude analysis induced by the disturbances on COMS using the received telemetries during normal mode (정상모드에서 수신된 텔레메트리를 이용한 외란에 의한 천리안위성 자세영향 분석)

  • Park, Young-Woong;Park, Bong-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.27-41
    • /
    • 2012
  • In this paper, there is analyzed the disturbances to impact on COMS attitude and the attitude error using the received telemetries in KARI ground station during normal mode of COMS. COMS was launched successfully at Kourou, French Guiana on the 26th of June, 2010. Up to now after IOT(in-orbit test), COMS is performing well the main mission to measure meteorology and ocean during about half and one year. The disturbances to impact on COMS attitude are mostly by the Sun, by the motion of payload mirror and by the spike happened during operation of earth sensor mirror and wheel. The analysis result on the other cases happened rarely during the nominal operation, is summarized.

Degradation Monitoring of Visible Channel Detectors on COMS MI Using Moon Observation Images (달 관측 영상을 이용한 천리안위성 기상탑재체 가시채널 검출기의 성능감쇄 분석)

  • Seo, Seok-Bae;Jin, Kyoung-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.115-121
    • /
    • 2013
  • The first geostationary satellite in Korea, COMS (Communication, Ocean, and Meteorological Satellite), has been operating properly since its successful completion of the IOT (In Orbit Test). COMS MI (Meteorological Imager) acquires Earth observation images from visible and infrared channels. This paper describes a method to compute the degradation of the COMS visible detectors and the result of the degradation during the two years of the operation. The visible channel detectors' performance was determined based on the comparison between the instrument-based measurements and ROLO model-based values. The degradation rate of the visible channel detectors of COMS MI showed a normal condition.

Development of Mobile Active Transponder for KOMPSAT-5 SAR Image Calibration and Validation (다목적실용위성 5호의 SAR 영상 검·보정을 위한 이동형 능동 트랜스폰더 개발)

  • Park, Durk-Jong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1128-1139
    • /
    • 2013
  • KOMPSAT-5(KOrea Multi-Purpose SATellite-5) has a benefit of continuously conducting its mission in all weather and even night by loading SAR(Synthetic Aperture Radar) payload, which is different from optical sensor of KOMPSAT-2 satellite. During IOT(In-Orbit Test) periods, SAR image calibration should be conducted through ground target of which location and RCS is pre-determined. Differently from the conventional corner reflector, active transponder has a capability to change its internal transfer gain and delay, which allows active transponder to be shown in a pixel of SAR image with very high radiance and virtual location. In this paper, the development of active transponder is presented from design to I&T(Integration and Test).

GEO-KOMPSAT-2A AMI Best Detector Select Map Evaluation and Update (천리안위성2A호 기상탑재체 Best Detector Select 맵 평가 및 업데이트)

  • Jin, Kyoungwook;Lee, Sang-Cherl;Lee, Jung-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.359-365
    • /
    • 2021
  • GEO-KOMPSAT-2A (GK2A) AMI (Advanced Meteorological Imager) Best Detector Select (BDS) map is pre-determined and uploaded before the satellite launch. After the launch, there is some possibility of a detector performance change driven by an abrupt temperature variation and thus the status of BDS map needs to be evaluated and updated if necessary. To investigate performance of entire elements of the detectors, AMI BDS analyses were conducted based on a technical note provided from the AMI vendor (L3HARRIS). The concept of the BDS analysis is to investigate the stability of signals from detectors while they are staring at targets (deep space and internal calibration target). For this purpose, Long Time Series (LTS) and Output Voltage vs. Bias Voltage (V-V) methods are used. The LTS for 30 secs and the V-V for two secs are spanned respectively for looking at the targets to compute noise components of detectors. To get the necessary data sets, these activities were conducted during the In-Orbit Test (IOT) period since a normal operation of AMI is stopped and special mission plans are commanded. With collected data sets during the GK2A IOT, AMI BDS map was intensively examined. It was found that about 1% of entire detector elements, which were evaluated at the ground test, showed characteristic changes and those degraded elements are replaced by alternative best ones. The stripping effects on AMI raw images due to the BDS problem were clearly removed when the new BDS map was applied.