• 제목/요약/키워드: In Orbit Test(IOT)

검색결과 17건 처리시간 0.023초

In-Orbit Test of COMS Ka-band Communications Payload (천리안통신위성 궤도내시험)

  • You, Moon-Hee;Jo, Jin-Ho;Lee, Seong-Pal;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • 제6권1호
    • /
    • pp.109-114
    • /
    • 2011
  • Ka-band payload of COMS (Communication, Ocean and Meteorological Satellite) launched in June 2010 was developed by ETRI with Korean local companies and also the in-orbit test (IOT) for the Ka-band payload was carried out entirely with domestic technology. The Ka-band payload IOT consisted of the antenna pattern measurements and the payload RF performance test was performed during about 40 days from 10 days after the launch. In this paper, the IOT methods and the results for the Ka-band payload are described in detail. According to the comparisons of each IOT test result with the corresponding ground test result, we can show that the Ka-band payload IOT and verification was successfully achieved and that all Ka-band channels of COMS are to be normal.

Validation of COMS Ka band Antenna Beam Coverage (천리안위성 Ka대역 안테나 빔 커버리지 검증)

  • Jo, Jin-Ho;You, Moon-Hee;Lee, Seong-Pal;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • 제7권1호
    • /
    • pp.86-91
    • /
    • 2012
  • This paper described validation results of COMS Ka band antennas beam coverages which were developed by ETRI. After satellite launch, In Orbit Test(IOT) activities are stat to check spacecraft and payloads are still in healthy condition after launch. During IOT phase, ETRI measured radiation patterns of COMS Ka band antennas and compare with ground test(CATR) results. The antenna patterns similarity between IOT results and CATR results show that COMS Ka band antenna withstand launch vibration and in the good healthy condition. After IOT, ETRI performed field test for beam coverage measurements with vehicle to check if Ka band beam coverage are formed well as designed. For the beam coverage measurement, 17 points were selected over the Korean peninsula. The field measurement data were very similar with CATR data and this confirms that beam coverage are formed well over the Korean peninsula as expected.

Earth Observation Mission Operation of COMS during In-Orbit Test (천리안위성 궤도상 시험의 지구 관측 임무 운영)

  • Cho, Young-Min
    • Journal of Satellite, Information and Communications
    • /
    • 제8권1호
    • /
    • pp.89-100
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service after the In-Orbit Test (IOT) phase. The COMS is located on $128.2^{\circ}$ East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. During the IOT phase the functionalities and the performances of the COMS satellite and ground station have been checked through the Earth observation mission operation for the observation of the meteorological phenomenon over several areas of the Earth and the monitoring of marine environments around the Korean peninsula. The operation characteristics of meteorological mission and ocean mission are described and the mission planning for the COMS is discussed. The mission operation results during the COMS IOT are analyzed through statistical approach for the study of both the mission operation capability of COMS verified during the IOT and the satellite image reception capacity achieved during the IOT.

Development of the Test and Mnitor System for Satellite Communications Payload and Network

  • Kong, Nam-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.34-37
    • /
    • 1994
  • A satellite communications monitoring and control system(SCMCS) has been developed at ETRI to provide the capabilities of in-orbit test (IOT) for communications payload and communications system monitoring(CSM) for the satellite communications services. The paper discusses the system level design of SCMCS and its tasks.

  • PDF

Analysis of COMS In-Orbit Test for Moment of Inertia Measurement (천리안위성 관성모멘트의 궤도상 측정 시험 분석)

  • Park, Keun-Joo;Park, Young-Woong;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.121-127
    • /
    • 2011
  • In the attitude and orbit control subsystem design, the moment of inertia of the satellite is the major contributor to be considered. Satellites equipped with large solar arrays need to measure the moment of inertia accurately to avoid the interference of the thruster actuation period with its flexible mode. In this paper, the in-orbit tests of COMS to measure the moment of inertia are described. Then, the differences between the measured through in-orbit test and the predicted are compared. Finally, it is verified that the differences are below uncertainty bounds considered in the critical design of COMS attitude and orbit control subsystem.

Secure control of satellite communication system using cryptosystem

  • Hong, Ki-Yoong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.218-223
    • /
    • 1994
  • On the satellite communication system, conventional key issues of control have been focused on the attitude and orbit control, monitoring and control of communication payload such as IOT(In-Orbit-Test) and CSM(Communication System Monitoring) and so on. As the vulnerabilities are being increased on the satellite communication network, security services are required to protect it against security violated attacks. In this paper, a security architecture for satellite communication network is presented in order to provide security services and mechanisms. Authentication protocol and encryption scheme are also proposed for spacecraft command authentication and confidentiality.

  • PDF

Functional and Performance Verification of the Space Weather Sensor on GEO-KOMPSAT-2A Satellite

  • Jin, Kyoungwook
    • Korean Journal of Remote Sensing
    • /
    • 제36권4호
    • /
    • pp.645-652
    • /
    • 2020
  • GK2A(GEO-KOMPSAT-2A)satellite has been operating excellently since its launch in Dec 2018. The secondary payload called KSEM (Korean Space Environment Monitor) was equipped into the GK2A satellite along with AMI (Advanced Meteorological Imager) sensor. KSEM is the Korea's first operational geostationary space weather sensor and has been developed collaboratively by KHU (Kyung Hee University) and KARI (Korea Aerospace Research Institute). The interface works between KSEM and GK2A were conducted by KARI. Various interface tests, which aim for evaluating effective functionality of KSEM with the spacecraft, were intensively conducted at KARI facilities. Main tests consisted of mechanical and electrical check-up activities between the KSEM and GK2A. Interface tests of KSEM, which involve pre-launch tests such as ETB and GK2A system level tests, were conducted to evaluate functional and performance of KSEM before the launch. The tests carried out during the GK2A LEOP (Launch and Early Orbit Phase) and IOT (In Orbit Test) period (Dec 2018 ~ June 2019) showed excellent in-orbit performance of KSEM data.

Characteristics of the Real-Time Operation For COMS Normal Operation (천리안위성 정상 운영의 실시간 운영 특성)

  • Cho, Young-Min;Park, Cheol-Min;Kim, Bang-Yeop;Lee, Sang-Cherl
    • Journal of Satellite, Information and Communications
    • /
    • 제8권2호
    • /
    • pp.80-87
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) has the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service. The COMS is located at $128.2{\circ}$ east longitude on the geostationary orbit and currently under normal operation service since April 2011. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band communication payload. The satellite controls for the three mission operations and the satellite maintenance are done by the real-time operation which is the activity to communicate directly with the satellite through command and telemetry. In this paper the real-time operation for COMS is discussed in terms of the ground station configuration and the characteristics of daily, weekly, monthly, seasonal, and yearly operation activities. The successful real-time operation is also confirmed with the one year operation results for 2011 which includes both the latter part of the In-Orbit-Test (IOT) and the first year normal operation of the COMS.

INTRODUCTION OF DATELLITE COMMUNICATION SYSTEM TEST LANGUNGE

  • Ahn, Dong-Hyun;Jung, Won-Chan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.229-231
    • /
    • 1994
  • For the effective use of satellite communication transponder, tests for the payload system such as IOT(In-Orbit Test), RPM(Routine Payload Monitoring), CSM(Communicatios System Monitoring), and REV(Remote Earth-Station Verification) have to be conducted. Those tests are used in order to verify the condition and generic design of the satellite, to provide a database for operational calculations, and to maintain the quality of communication services. As the satellite communication system gets with wider expansion with higher complexity of operation, tests for the communication system also need more complex operation that usesophisticated computer-controlled measuring system. For and C language based measurement functions, which uses GPIB protocol and SCPI commands. But SICL requires knowledge of BASIC and C language as well as GPIB and SCPL system. This paper introduces a new language called CALSTEP-Control and Access Language for the Systems of Test Equipment and Payload. This language is designed for the operator to perform the tests for the satellite communication system without any special knowledge that is mentioned above. This language has very limited number of commands which are to be used to control the payload system and test equipments to perform IOT and CSM, and those commands are very readable and easy to understand, so an operator without any knowledge of BASIC and C programming language, or SICL and SCPI command can use it.

  • PDF

COMS Normal Operation for Earth Observation Mission

  • Cho, Young-Min
    • Korean Journal of Remote Sensing
    • /
    • 제29권3호
    • /
    • pp.337-349
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service on $128.2^{\circ}$ East of the geostationary orbit since April 2011. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first one-year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.