• Title/Summary/Keyword: Impurity gas

Search Result 134, Processing Time 0.03 seconds

Effect of Carbon dioxide in Fuel on the Performance of PEM Fuel Cell (연료중의 이산화탄소 불순물에 의한 연료전지 성능변화 연구)

  • Seo, Jung-Geun;Kwon, Jung-Taek;Kim, Jun-Bom
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.184-187
    • /
    • 2007
  • Hydrogen could be produced from any substance containing hydrogen atoms, such as water, hydrocarbon (HC) fuels, acids or bases. Hydrocarbon fuels couold be converted to hydrogen-rich gas through reforming process for hydrogen production. Even though fuel cell have high efficiency with pure hydrogen from gas tank, it is more beneficial to generate hydrogen from city gas (mainly methane) in residential application such as domestic or office environments. Thus hydrogen is generated by reforming process using hydrocarbon. Unfortunately, the reforming process for hydrogen production is accompanied with unavoidable impurities. Impurities such as CO, $CO_2$, $H_2S$, $NH_3$, and $CH_4$ in hydrogen could cause negative effects on fuel cell performance. Those effects are kinetic losses due to poisoning of electrode catalysts, ohmic losses due to proton conductivity reduction including membrane and catalyst ionomer layers, and mass transport losses due to degrading catalyst layer structure and hydrophobic property. Hydrogen produced from reformer eventually contains around 73% of $H_2$, 20% or less of $CO_2$, 5.8% of less of $N_2$, or 2% less of $CH_4$, and 10ppm or less of CO. Most impurities are removed using pressure swing adsorption (PSA) process to get high purity hydrogen. However, high purity hydrogen production requires high operation cost of reforming process. The effect of carbon dioxide on fuel cell performance was investigated in this experiment. The performance of PEM fuel cell was investigated using current vs. potential experiment, long run (10 hr) test, and electrochemical impedance measurement when the concentrations of carbon dioxide were 10%, 20% and 30%. Also, the concentration of impurity supplied to the fuel cell was verified by gas chromatography (GC).

  • PDF

The Characteristic Variation of Mask with Plasma Treatment (플라즈마 처리에 의한 마스크 특성 변화)

  • Kim, Jwa-Yeon;Choi, Sang-Su;Kang, Byung-Sun;Min, Dong-Soo;An, Young-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • We have studied surface roughness, contamination of impurity, bonding with some gas element, reflectance and zeta potential on masks to be generated or changed during photolithography/dry or wet etching process. Mask surface roughness was not changed after photolithography/dry etching process. But surface roughness was changed on some area under MoSi film of Cr/MoSi/Qz. There was not detected any impurity on mask surface after plasma dry etching process. Reflectance of mask was increased after variable plasma etching treatment, especially when mask was treated with plasma including $O_2$ gas. Blank mask was positively charged when the mask was treated with Cr plasma etching gas($Cl_2:250$ sccm/He:20 $sccm/O_2:29$ seem, source power:100 W/bias power:20 W, 300 sec). But this positive charge was changed to negative charge when the mask was treated with $CF_4$ gas for MoSi plasma etching, resulting better wet cleaning. There was appeared with negative charge on MoSi/Qz mask treated with Cr plasma etching process condition, and this mask was measured with more negative after SC-1 wet cleaning process, resulting better wet cleaning. This mask was charged with positive after treatment with $O_2$ plasma again, resulting bad wet cleaning condition.

Superconducting Characteristics of BSCCO Thin Film Fabricated by Co-deposition (동시 증착으로 제작한 BSCCO 박막의 초전도 특성)

  • Lee, Hee-Kab;Lee, Joon-Ung;Park, Yong-Pil
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.929-931
    • /
    • 1999
  • BSCCO thin films have been fabricated by co-deposition at an ultralow growth rate using ion beam sputtering(IBS) method. Bi 2212 phase appeared in the temperature range of 750 and $795^{\circ}C$ and single phase of Bi 2201 existed in the lower region than $785^{\circ}C$. Whereas, ozone gas pressure dependance on structural formation was scarcely observed regardless of the pressure variation. And high quality of c-axis oriented Bi 2212 thin film with $T_c$(onset) of about 90 K and $T_c$(zero) of about 45 K is obtained. Only a small amount of CuO in some films was observed as impurity, and no impurity phase such as $CaCuO_2$ was observed in all of the obtained films.

  • PDF

The Correlation Properties between Substrate and Molybdenum Back Contacts Fabricated by DC Magnetron Sputtering (DC 반응성 스퍼터링법에 의해 제조된 몰리브덴 후면전극과 기판과의 상관특성분석)

  • Kim, Seok-Gi;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.3
    • /
    • pp.149-154
    • /
    • 2000
  • Bi-layer Mo films were deposited on soda-lime glass substrates using DC magnetron supttering. Increasing gas pressure, the resistivity varied from $1\times10^{-5}\; to\; 8.3\times10^{-3}\; \Omega.cm$. Furthermore, stress direction yielded compressive-to-tensile transition stress curves. The micro-structure of the compressively-stressed film which had poor adhesion consists of tightly packed columns, but of the tensile-stressed films had less dense structure. Under all gas pressure conditions, Mo films exhibited distinctly increasing optical reflection with decreasing gas pressure. The expansion of (110) peak width with the gas pressure meant the worse crystalline growth. The impurity levels in the Mo film exhibited highly concentrated Na, Se and O elements due to less dense micro-structure. The degree of Na diffusion depends on the type of the glass substrate used and the nature of the Mo film.

  • PDF

How to Eliminate CO, CO2 and CH4 in H2 & Inert Gas -Possibility of Fuel Cell Application- (수소와 불활성 가스 중 일산화탄소, 이산화탄소, 메탄 제거에 관한 연구 -연료전지에의 적용 가능성-)

  • Lee, Taek-Hong;Cheon, Young-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.220-227
    • /
    • 2004
  • The purpose of this paper is, based on the theoretical background of the principle of gas purification and absorption, and the absorbing ability of metals, to syudy the efficiency of gas purification of inorganic gases using Zr alloys, so as to contribute to the IT industry. To produce and distribute gas with high purity and ultra-high purity, different types of gas purifier are currently being used: distillation type, getter type, catalyst type, absorption at low-temperature type, and membrane separation equipment. From the different purification methods mentioned above, the getter type gas purifier is capable of not only high performance and capacity but also P.O.U(Point Of Use) method. The key of the getter type gas purifier is its efficiency of gas purification, which is the subject chosen for this study.

The Effect of Methane in Hydrogen on the Performance of Proton Exchange Membrane Fuel Cell (수소연료 중의 메탄에 의한 고분자전해질 연료전지 성능변화 연구)

  • Seo, Jung-Geun;Kwon, Jun-Taek;Kim, Jun-Bum;Chung, Jong-Tae;Kim, Woo-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.432-438
    • /
    • 2007
  • The reforming process for hydrogen production generates some impurities. Impurities in hydrogen such as $CO_2$, CO, $H_2S$, $NH_3$ affect fuel cell performance. It is well known that CO generated by the reforming process may negatively affect performance of cell, cause damage on catalysts resulting performance degradation. Hydrogen produced by reforming process includes about 2% methane. The presence of methane up to 10% is reported negligible degradation in cell performance. However, methane more than 10% in hydrogen stream had not been researched. The concentration of impurity supplied to the fuel cell was verified by gas chromatography(GC). In this study, the influence of $CH_4$ on performance of PEM fuel cell was investigated by means of current vs. potential experiment, long run(10 hr) test and electrochemical impedance measurement when the concentrations of impurities were 10%, 20% and 30%.

Optical Purity Determination of (S)-Ibuprofen in Tablets by Achiral Gas Chromatography

  • Paik, Man-Jeong;Kim, Kyoung-Rae
    • Archives of Pharmacal Research
    • /
    • v.27 no.8
    • /
    • pp.820-824
    • /
    • 2004
  • An optical purity test was indirectly performed on (S)-ibuprofen as its diastereomeric (R)-(+)-1-phenylethylamide derivative using achiral gas chromatography (GC). The method for the determination of trace (R)-ibuprofen (optical impurity), within the range 1.0 to 50 ng, from a racemic ibuprofen standard was linear (r=0.9997) with acceptable precision (% $RSD{\leq}5.3$) and accuracy (% RE=0.7~-3.9). Similar results were obtained with the method validation for the quantification of (S)-ibuprofen within the range 0.1 to 2.0 $\mu\textrm{g}$ using a (S)-ibuprofen stan-dard. When applied to seven different commercial (S)-ibuprofen products, their optical purities (98.7~99.1%) were determined with good precision (% $RSD{\leq}4.0$).

Formation of Microporosities in Sputter-Deposited AgInSbTe Thin Films and Their Behavior (스퍼터 증착시킨 AgInSbTe 박막에서 미세기공의 형성과 그 거동)

  • Kim, Myong-R.;Seo, H.;Park, J. W.;Choi, W. S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.84-89
    • /
    • 1996
  • The nucleation and growth of microporosities was observed during the course of annealing treatment of sputter-deposited AgInSbTe thin films. There was a close correlation between the density of microporosity and the sputtering gas pressure in annealed thin films. The void density for a given composition decreased with sputtering gas pressure. It was shown from the present study that the number of porosities decreased while the average porosity size increased as the annealing temperature and holding time increased. The mechanism of porosity formation in the sputter-deposited AgInSbTe thin flus containing Ar-impurity trapped from the Ar-plasma is discussed in the present article.

  • PDF

A Study on Ammonia Formation with Nitrogen Impurity at a Natural Gas Steam Reforming Catalytic Process (소량의 질소를 포함한 천연가스 수증기 개질 반응에서 GHSV 변화에 따른 암모니아 생성 반응에 관한 연구)

  • KIM, CHUL-MIN;PARK, SANG-HYOUN;LEE, JUHAN;LEE, SANGYONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.601-607
    • /
    • 2019
  • Ammonia would be formed in natural gas containing small amount of nitrogen reforming process in the process natural gas, which might damage the Pt catalyst and Prox catalyst. In the article, the effect of nitrogen contents on the formation of ammonia in the reforming process has been studied. In the experiments, Ru based and Ni based catalysts were used and the concentration of ammonia in the reformate gas at various gas hourly space velocity was measured. Experimental result shows that relatively higher ammonia concentration was measured with Ru based catalyst than with Ni based catalyst. It also shows that the concentration of ammonia increased rapidly after most of the methane converted into hydrogen. Based on the experimental results to reduce ammonia concentration it might be better to finish methane conversion at the exit position of the reforming reactor to minimize the contact time of catalyst and nitrogen with high concentration of hydrogen.

Monitoring of hexachlorobenzene (HCB) contents as an impurity in different sources of chlorothalonil technical (국내 농약제조용 chlorothalonil 원제 중 hexachlorobenzene 함량 조사)

  • Kim, Jeong-Gu;Shin, Wook-Cheol;Lee, Hong-Goun;Park, Seung-Soon;Oh, Kyeong-Seok;Joo, Jin-Bok;Oh, Byung-Youl
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.4
    • /
    • pp.31-34
    • /
    • 2000
  • The contents of hexachlorobenzene (HCB), a hazardous impurity, in chlorothalonil were monitored through 1996 to 2000. The number of samples were 32 from three different sources. The contents determined by GLC/ECD were ranged from 0.0036% to 0.0330% with average content of 0.0219%. All the samples were recorded below 0.05%, which is the regulation standard of HCB in the technical. The total input of HCB in Korean agriculture was calculated to be approximately 77 kg a year.

  • PDF