Optical Purity Determination of (S)-Ibuprofen in Tablets by Achiral Gas Chromatography

  • Published : 2004.08.01

Abstract

An optical purity test was indirectly performed on (S)-ibuprofen as its diastereomeric (R)-(+)-1-phenylethylamide derivative using achiral gas chromatography (GC). The method for the determination of trace (R)-ibuprofen (optical impurity), within the range 1.0 to 50 ng, from a racemic ibuprofen standard was linear (r=0.9997) with acceptable precision (% $RSD{\leq}5.3$) and accuracy (% RE=0.7~-3.9). Similar results were obtained with the method validation for the quantification of (S)-ibuprofen within the range 0.1 to 2.0 $\mu\textrm{g}$ using a (S)-ibuprofen stan-dard. When applied to seven different commercial (S)-ibuprofen products, their optical purities (98.7~99.1%) were determined with good precision (% $RSD{\leq}4.0$).

Keywords

References

  1. Abushoffa, A. M., Fillet, M., Hubert, P., and Crommen, J., Prediction of selectivity for enantiomeric separations of uncharged compounds by capillary electrophoresis involving dual-cyclodextrin systems. J. Chromatogr. A, 948, 321-329 (2002) https://doi.org/10.1016/S0021-9673(01)01371-1
  2. Baillie, T. A., Adams, W. J., Kaiser, D. G., Olanoff, L. S., Halstead, G. W., Harpootlian, H., and Van Giessen, G. J., Mechanistic studies of the metabolic chiral inversion of (R)-ibuprofen in humans. J. Pharmacol. Exp. Ther., 249, 517-523 (1989)
  3. Bhunshan, R. and Martens, J., Resolution of enantiomers of ibuprofen by liquid chromatography. Biomed. Chromatogr., 12,309-316 (1998)
  4. Bjornsdottir, I., Kepp, D. R., Tjornelund, J., and Hansen, S. H., Separation of the enantiomers of ibuprofen and its major phase I metabolites in urine using capillary electrophoresis. Electrophoresis, 19, 455-460 (1998) https://doi.org/10.1002/elps.1150190316
  5. Blanco, M., Coello, J., Iturriaga, H., Maspoch, S., and Perez-Maseda, C., Separation of profen enantiomers by capillary electrophoresis using cyclodextrins as chiral selectors. J. Chromatogr. A, 793, 165-175 (1998) https://doi.org/10.1016/S0021-9673(97)00893-5
  6. Blessington, B., Crabb, N., Karkee, S., and Northage, A., Chromatographic approaches to the quality control of chiral propionate anti-inflammatory drugs and herbicides. J. Chromatogr. A, 469, 183-190 (1989) https://doi.org/10.1016/S0021-9673(01)96453-2
  7. Carlson, A. and Gyllenhaal, O., Separation of carboxylic acids enantiomers by gas chromatography after rapid derivatization with (R)- or (S)-1-phenylethylamine after activation by ethyl chloroformate. J. Chromatogr. A, 508, 333-339 (1990) https://doi.org/10.1016/S0021-9673(00)91275-5
  8. Davies, N. M., Method of analysis of chiral-non-steroidal anti-inflammatory drugs. J. Chromatogr. B, 691, 229-261 (1997) https://doi.org/10.1016/S0378-4347(96)00442-2
  9. Jabor, V. A. P., Lanchote, V. L., and Bonato, P. S., Enantiose-lective analysis of ibuprofen in human plasma by anionic cyclodextrin-modified electrokinetic chromatography. Electro-phoresis, 23, 3041-3047 (2002) https://doi.org/10.1002/1522-2683(200209)23:17<3041::AID-ELPS3041>3.0.CO;2-Q
  10. Jamali, F. and Wainer, I. W. (Eds.). Drug Stereochemistry. Marcel Dekker Inc., New York, pp. 375-384, (1993)
  11. La, S., Kim, J., Kim, J. H., Goto, J., and Kim, K. R., Simultaneous chiral discrimination of multiple profens by cyclodextrin-modified capillary electrophoresis in normal and reversed polarity modes. Electrophoresis, 24, 2642-2649 (2003) https://doi.org/10.1002/elps.200305450
  12. Lombardino, J. G., In Lombardino, J. G. (Ed.). Non-steroidal anti-inflammatory drugs. vol. 5, Wiley, New York, pp. 303-345, (1985)
  13. Paik, M. J., Lee, Y. S., Goto, J., and Kim, K. R., Chiral discrimination of multiple profens as diastereomeric (R)-(+)-1-phenylethylamides by achiral dual-column gas chromato-graphy. J. Chromatogr. B, 803, 257-265 (2004) https://doi.org/10.1016/j.jchromb.2003.12.026
  14. Pehourcq, F., Lagrange, F., Labat, L., and Bannwarth, B., Simultaneous measurement of flurbiprofen, ibuprofen and ketoprofen enantiomer concentrations in plasma using L-leucinamide as the chiral coupling component. J. Liq. Chromatogr., 18, 3969-3979 (1995) https://doi.org/10.1080/10826079508013739
  15. Rudy, A. C., Anliker, K. S., and Hall, S. D., High-performance liquid chromatographic determination of the stereoisomeric metabolites of ibuprofen. J. Chromatogr. B, 528, 395-405 (1990) https://doi.org/10.1016/S0378-4347(00)82397-X
  16. Santa, T., Luo, J. Lim, C.-K., and Imai, K., Enantiomeric separa-tion and detection by high-performance liquid chromatography-mass spectrometry of 2-arylpropionic acids derivatized with benzofurazan fluorescent reagents. Biomed. Chromatogr., 12, 73-77 (1998) https://doi.org/10.1002/(SICI)1099-0801(199803/04)12:2<73::AID-BMC725>3.0.CO;2-B
  17. Thomason, M. J., Hung, Y. -F., Rjys-Williams, W., Hanlon, G. W., and Lloyd, A.W., Indirect enantiomeric separation of 2-arylpropionic acids and structurally related compounds by reversed phase HPLC. J. Pharm. Biomed. Anal., 15, 1765-1774 (1997) https://doi.org/10.1016/S0731-7085(96)01979-6
  18. Tracy, T. S. and Hall, S., Metabolic inversion of (R)-ibuprofen. Epimerization and hydrolysis of ibuprofenyl-coenzyme A. Drug Metabol. Dispos., 20, 322-327 (1992)
  19. Wright, R. M. and Jamali, F., Limited extent of stereochemical conversion of chiral non-steroidal anti-inflammatory drugs induced by derivatization methods employing ethyl chloro-formate. J. Chromatogr., 616, 59-65 (1993) https://doi.org/10.1016/0378-4347(93)80471-F
  20. Yasaka, Y., Ono, Y., and Tanaka, M., (S)-(+)-1-Methyl-2-(6,7,dimethoxy-2,3-naphthalimido)ethyltrifluoromethanesulfonate as a fluorescence chiral derivatizing reagent for carboxylic acid enantiomers in high-performance liquid chromatography. J. Chromatogr. A, 810, 221-225 (1998)