• Title/Summary/Keyword: Impurity concentration

Search Result 156, Processing Time 0.026 seconds

A Study on the Manufacture of $\alpha$-Fe$_2$O (Major Material of Ferrite) by Waste Pickling Liquor of Steel (강철의 산세폐액으로부터 Ferrite의 주원료인 Fe$_3$O$_3$의 제조에 관한 연구)

  • 최석진
    • Journal of the Korean Ceramic Society
    • /
    • v.13 no.1
    • /
    • pp.25-29
    • /
    • 1976
  • The properties vary with quality of ferric-oxide that is major material of ferrites. In this point of view, a manufacturing method of pure and homogeneous fine ferric oxide is very important. The characters of this study are as follows: 1) Ferric oxide was made from waste pickling liquor of steel. 2) The crude ferric-oxide that is made by roasting the pickling liquor was dissolved in 20% HCI solution and then produced ferric chloride is purified by ethyl ether extraction. 3) The methanol solution of purified ferric chloride was sprayed into the refractory tube with compressed air and propane gas and then ignited leading to the ferric-oxide powder. 4) The produced oxide powder was introduced to the scrubber type vessel throught cooling system in order to collect the powder. 5) Crystalline phase of the powder was identified by X-ray diffraction and particle size, crystalline shape of the powder were investigated by settling method and electron microscope and the effects of concentration of ferric chloride in methanol on grain size were discussed. Results were obtained as fellows: 1) Total impurity in the ferric oxide produced from waste pickling liquor was 3.7%. 2) The solubilityof crude ferric oxide that was made from waste pickling liquor in HCI solution increased with the HCI concentration and reached to saturation range at 15% HCI concentration. 3) Extraction of FeCl3 increased with HCI concentration which is solvent. 4) Alpha ferric oxide obtained was very fine crystalline particles, the mean crystalline grain increased with the concentration of ferric chloride, and mean grain size distributed from 3.5$\mu$(at 0.5mole/l) to 0.5$\mu$(at 0.05mole/l).

  • PDF

Threshold Voltage Movement for Channel Doping Concentration of Asymmetric Double Gate MOSFET (도핑농도에 따른 비대칭 이중게이트 MOSFET의 문턱전압이동현상)

  • Jung, Hakkee;Lee, jongin;Jeong, Dongsoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.748-751
    • /
    • 2014
  • This paper has analyzed threshold voltage movement for channel doping concentration of asymmetric double gate(DG) MOSFET. The asymmetric DGMOSFET is generally fabricated with low doping channel and fully depleted under operation. Since impurity scattering is lessened, asymmetric DGMOSFET has the adventage that high speed operation is possible. The threshold voltage movement, one of short channel effects necessarily occurred in fine devices, is investigated for the change of channel doping concentration in asymmetric DGMOSFET. The analytical potential distribution of series form is derived from Possion's equation to obtain threshold voltage. The movement of threshold voltage is investigated for channel doping concentration with parameters of channel length, channel thickness, oxide thickness, and doping profiles. As a result, threshold voltage increases with increase of doping concentration, and that decreases with decrease of channel length. Threshold voltage increases with decrease of channel thickness and bottom gate voltage. Lastly threshold voltage increases with decrease of oxide thickness.

  • PDF

Impurity Pick-Up for the Preparation of NiCuZn Ferrite Powder Using Ball Milling Process (NiCuZn Ferrite 분말제조에 있어서 Ball Mill 분쇄 공정 중에 혼입되는 불순물의 함량)

  • 고재천;류병환
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.4
    • /
    • pp.217-222
    • /
    • 1999
  • The pick up impurity was studied for preparing the NiCuZn ferrite powder by a ball milling method that usually uses in the industrial ceramic process. The raw materials of NiO, CuO, ZnO, and $Fe_2O_3$ powder were weighted according to various spinel composition and mixed for 18 hrs by a wet ball milling method after that the slurry was followed by spray dried and calcined at $700^{\circ}C$ 3 hrs. The calcined NCZF powder was finally ball milled during 65 hrs as same method. The stainless steel ball and jar are used as mixing and milling equipment and the solid concentration of the slurry was 25 vol%. The impurities, stainless steel pickup, were effected by the composition of raw materials especially iron oxide, nickel oxide in the mixing process and by the rate of calcine of NiCuZn ferrite in final milling process. The empirical equation of stainless steel pickup was driven in the wet ball milling system. Finally, the composition of NiCuZn ferrite could be controlled by the empirical equation.

  • PDF

The Effect of Methane in Hydrogen on the Performance of Proton Exchange Membrane Fuel Cell (수소연료 중의 메탄에 의한 고분자전해질 연료전지 성능변화 연구)

  • Seo, Jung-Geun;Kwon, Jun-Taek;Kim, Jun-Bum;Chung, Jong-Tae;Kim, Woo-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.432-438
    • /
    • 2007
  • The reforming process for hydrogen production generates some impurities. Impurities in hydrogen such as $CO_2$, CO, $H_2S$, $NH_3$ affect fuel cell performance. It is well known that CO generated by the reforming process may negatively affect performance of cell, cause damage on catalysts resulting performance degradation. Hydrogen produced by reforming process includes about 2% methane. The presence of methane up to 10% is reported negligible degradation in cell performance. However, methane more than 10% in hydrogen stream had not been researched. The concentration of impurity supplied to the fuel cell was verified by gas chromatography(GC). In this study, the influence of $CH_4$ on performance of PEM fuel cell was investigated by means of current vs. potential experiment, long run(10 hr) test and electrochemical impedance measurement when the concentrations of impurities were 10%, 20% and 30%.

Effect of Carbon dioxide in Fuel on the Performance of PEM Fuel Cell (연료중의 이산화탄소 불순물에 의한 연료전지 성능변화 연구)

  • Seo, Jung-Geun;Kwon, Jung-Taek;Kim, Jun-Bom
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.184-187
    • /
    • 2007
  • Hydrogen could be produced from any substance containing hydrogen atoms, such as water, hydrocarbon (HC) fuels, acids or bases. Hydrocarbon fuels couold be converted to hydrogen-rich gas through reforming process for hydrogen production. Even though fuel cell have high efficiency with pure hydrogen from gas tank, it is more beneficial to generate hydrogen from city gas (mainly methane) in residential application such as domestic or office environments. Thus hydrogen is generated by reforming process using hydrocarbon. Unfortunately, the reforming process for hydrogen production is accompanied with unavoidable impurities. Impurities such as CO, $CO_2$, $H_2S$, $NH_3$, and $CH_4$ in hydrogen could cause negative effects on fuel cell performance. Those effects are kinetic losses due to poisoning of electrode catalysts, ohmic losses due to proton conductivity reduction including membrane and catalyst ionomer layers, and mass transport losses due to degrading catalyst layer structure and hydrophobic property. Hydrogen produced from reformer eventually contains around 73% of $H_2$, 20% or less of $CO_2$, 5.8% of less of $N_2$, or 2% less of $CH_4$, and 10ppm or less of CO. Most impurities are removed using pressure swing adsorption (PSA) process to get high purity hydrogen. However, high purity hydrogen production requires high operation cost of reforming process. The effect of carbon dioxide on fuel cell performance was investigated in this experiment. The performance of PEM fuel cell was investigated using current vs. potential experiment, long run (10 hr) test, and electrochemical impedance measurement when the concentrations of carbon dioxide were 10%, 20% and 30%. Also, the concentration of impurity supplied to the fuel cell was verified by gas chromatography (GC).

  • PDF

The Study on Phase Transition Pressure of Donor doped Pb(Zr0.52Ti0.48)O3 Ceramics with Diamond Anvil Cell (다이아몬드 엔빌 셀을 이용한 Donor doped Pb(Zr0.52Ti0.48)O3 세라믹스의 상전이 압력 연구)

  • Cho, Kyung-Ho;Ko, Young-Ho;Seo, Chang-Eui;Kim, Kwang-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.471-478
    • /
    • 2011
  • Investigations of crystal structure and phase transition of $Pb(Zr_{0.52}Ti_{0.48})O_3$ ceramics doped with A-site substitution impurity (La, Nd) or B-site substitution impurity (Sb, Nb) at 2 mol% concentration were carried out. X-ray diffraction patterns of impurities doped $Pb(Zr_{0.52}Ti_{0.48})O_3$ ceramics have been measured at pressures up to ~5 GPa with diamond anvil cell and synchrotron radiation. The patterns were obtained at room temperature using methanol-ethanol mixture as pressure-transmitting media. In order to refine the crystal structure, Rietveld analysis has been performed. The structures of impurities doped $Pb(Zr_{0.52}Ti_{0.48})O_3$ ceramics are tetragonal in space group P4mm at ambient pressure and are transformed into a cubic phase in space group Pm$\bar{3}$m as the pressure increases. In this study, when A-site substitution donor $La^{3+}$ or $Nd^{3+}$ ion was added to $Pb(Zr_{0.52}Ti_{0.48})O_3$ ceramics, the phase transition phenomena showed up at the pressure of 2.5~4.6 GPa, but when B-site substitution donor $Nb^{5+}$ or $Sb^{5+}$ ion was added to it, the phase transition appeared at relatively lower pressure of 1.7~2.6 GPa.

Determination of Neutron Absorption Fraction Factor in Manganese Sulfate Bath System (황산망간 용액조 장치의 중성자 흡수분율 보정인자 결정)

  • Lee, Kyung-Ju;Park, Kil-Oung;Hwang, Sun-Tae;Lee, Kun-Jai
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.12-17
    • /
    • 1989
  • The correction factor of neutron fraction absorbed by $^{55}$ Mn in the MnSO$_4$ bath was determined for the absolute measurement of neutron emission rate by using the solution circulation-type manganese sulfate bath system. For the determination of this correction factor, I/f, the atomic number desnsity and the effective neutron capture cross section data of Mn, S and impurity elements in the MnSO$_4$ solution were determined. For the atomic number density determination, the MnSO$_4$ solution concentration was determined by using the volumetric EDTA titration and gravimetric method. The impurity contents were analyzed by using the ICP method. For the calculation of effective neutron capture cross sections, a FORTRAN computer program EASCAL was developed in this study. in which Westcott's parameters and Axton's empirical relations are used.

  • PDF

Qualitative and quantitative assessment of process related impurities in Brigatinib raw material and formulations using HPLC

  • Attada Tharun;Potnuru Jagadeesh;B Srinivasa Kumar;Kota Thirumala Prasad;Venkateswara Rao Anna
    • Analytical Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.180-190
    • /
    • 2023
  • The presence of process related impurities in any drug or the drug product was associated with its safety, stability and efficacy. The overall literature survey proved that there is no method published on the assessment of process related impurities in brigatinib. In this study, a simple, reliable and stable HPLC qualitative method was reported for quantification of process related impurities with easy and quick extraction procedure. The impurities along with standard brigatinib was resolved on Lichrospher® C18 (250 mm × 4.6 mm; 5 ㎛ particle size) column in room temperature using methanol, acetonitrile, pH 4.5 phosphate buffer in 55:25:20 (v/v) at 1.0 mL/min as mobile phase and UV detection at 261 nm. The method produces well resolved peaks at retention time of 4.60 min, 12.28 min, 3.37 min, 7.34 min and 8.39 min respectively for brigatinib, impurity A, B, C and D. The method produces a very sensitive detection limit of 0.0065 ㎍/mL, 0.0068 ㎍/mL, 0.0053 ㎍/mL and 0.0058 ㎍/mL for impurity A, B, C and D respectively with calibration curve linear in the concentration range of 22.5-135 ㎍/mL for brigatinib and 0.0225-0.135 ㎍/mL for impurities. The method produces all the validation parameters under the acceptable level and doesn't produces any considerable changes in peak area response while minor changes in the developed method conditions. The method can effectively resolve the unknown stress degradation products along with known impurities with less % degradation. The method can efficiently resolve and quantify the impurities in formulation and hence can suitable for the routine quality analysis of brigatinib in raw material and formulation.

Controlling size and magnetic properties of Fe3O4 clusters in solvothermal process

  • Madrid, Sergio I. Uribe;Pal, Umapada;Jesus, Felix Sanchez-De
    • Advances in nano research
    • /
    • v.2 no.4
    • /
    • pp.187-198
    • /
    • 2014
  • Magnetite nanoparticles (MNPs) of different sizes were synthesized by solvothermal process maintaining their stoichiometric composition and unique structural phase. Utilizing hydrated ferric (III) chloride as unique iron precursor, it was possible to synthesize sub-micrometric magnetite clusters of sizes in between 208 and 381 nm in controlled manner by controlling the concentration of sodium acetate in the reaction mixture. The sub-micrometer size nanoclusters consist of nanometric primary particles of 19 - 26.3 nm average size. The concentration of sodium acetate in reaction solution seen to control the final size of primary MNPs, and hence the size of sub-micrometric magnetite nanoclusters. All the samples revealed their superparamagnetic behavior with saturation magnetization ($M_s$) values in between 74.3 and 77.4 emu/g. $M_s$. The coercivity of the nanoclusters depends both on the size of the primary particles and impurity present in them. The mechanisms of formation and size control of the MNPs have been discussed.

Deuterium Naturally Present in Solvent and Site-Specific Isotope Population of Deuterium-Enriched Solute

  • Hwang, Ryeo Yun;Han, Oc Hee;Lee, Juhee;Kim, Eun Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2959-2962
    • /
    • 2013
  • As the concentration of aqueous $CD_3OH$ solutions was decreased, the OD peaks in $^2H$ NMR spectra grew relative to the $CD_3$ peaks. Isotope impurity for OH groups of $CD_3OH$ and deuterium naturally present in water contributed to the OD peaks. Using these peak area data, the site-specific isotope populations of isotope enriched chemicals were measured. In addition, the method using both $^1H$ and $^2H$ NMR spectroscopy was demonstrated with neat $CD_3OH$ to measure the site-specific isotope populations. The results indicate that although it represents only ~0.015% of hydrogen isotopes, the deuterium naturally present in solvents cannot be ignored, especially when the concentration of deuterium-enriched solutes is varied. Proton/deuteron exchange between methyl and methyl/hydroxyl groups was confirmed to be negligible, while that among hydroxyl groups was detectable.