As the loan size of real estate PF is huge, its market ripple effect gets bigger when overdue occurs. Accordingly, the management of the delinquency rate and macroeconomic analysis are required. As the preceding research mainly proceeded with microeconomic analysis through the real estate PF data of individual banks to evaluate importance of list or analyzed core factors for delinquency, it lacked research on comprehensive real estate PF size. In order to overcome the limitations of such data, this research studied real estate PF delinquency rate of the entire market and effect relationship by the size. The research utilized the size of real estate PF loans, money supply, interest rate, consumer price index(CPI), and GDP data. Also, it applied the first model of VECM as linear relationship between at least two or more variables, following the result of co-integration test. As a result of Granger-causality test, the real estate PF loans delinquency rate is influenced by their loan size, and as a result of impulse response analysis, the interest rate is shown to be affecting delinquency rate the most. Interest rate could risesomeday and aggravate the delinquency rate of real estate PF. Also, risk exposure could be serious as the loan size increases.Therefore, the management of real estate PF delinquency rate requires continuous monitoring, tracking and observing issued loans from a macro point of view. The plans to prevent delinquency will be necessary.
Purpose - This work analyzes, in detail, the specification of vector error correction model (VECM) and thus examines the relationships and impact among seven economic variables for USA - balance on current account (BCA), index of stock (STOCK), gross domestic product (GDP), housing price indices (HOUSING), a measure of the money supply that includes total currency as well as large time deposits, institutional money market funds, short-term repurchase agreements and other larger liquid assets (M3), real rate of interest (IR_REAL) and household credits (LOAN). In particular, we search for the main explanatory variables that have an effect on stock and real estate market, respectively and investigate the causal and dynamic associations between them. Research design, data, and methodology - We perform the time series vector error correction model to infer the dynamic relationships among seven variables above. This work employs the conventional augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root techniques to test for stationarity among seven variables under consideration, and Johansen cointegration test to specify the order or the number of cointegration relationship. Granger causality test is exploited to inspect for causal relationship and, at the same time, impulse response function and variance decomposition analysis are checked for both short-run and long-run association among the seven variables by EViews 9.0. The underlying model was analyzed by using 108 realizations from Q1 1990 to Q4 2016 for USA. Results - The results show that all the seven variables for USA have one unit root and they are cointegrated with at most five and three cointegrating equation for USA. The vector error correction model expresses a long-run relationship among variables. Both IR_REAL and M3 may influence real estate market, and GDP does stock market in USA. On the other hand, GDP, IR_REAL, M3, STOCK and LOAN may be considered as causal factors to affect real estate market. Conclusions - The findings indicate that both stock market and real estate market can be modelled as vector error correction specification for USA. In addition, we can detect causal relationships among variables and compare dynamic differences between countries in terms of stock market and real estate market.
More accurate forecasting of port cargo in the global long-term recession is critical for the implementation of port policy. In this study, the Busan Port container volume (export cargo and transshipment cargo) was estimated using the Vector Autoregressive (VAR) model and the vector error correction (VEC) model considering the causal relationship between the economic scale (GDP) of Korea, China, and the U.S. as well as ARIMA, a single volume model. The measurement data was the monthly volume of container shipments at the Busan port J anuary 2014-August 2019. According to the analysis, the time series of import and export volume was estimated by VAR because it was relatively stable, and transshipment cargo was non-stationary, but it has cointegration relationship (long-term equilibrium) with economic scale, interest rate, and economic fluctuation, so estimated by the VEC model. The estimation results show that ARIMA is superior in the stationary time-series data (local cargo) and transshipment cargo with a trend are more predictable in estimating by the multivariate model, the VEC model. Import-export cargo, in particular, is closely related to the size of our country's economy, and transshipment cargo is closely related to the size of the Chinese and American economies. It also suggests a strategy to increase transshipment cargo as the size of China's economy appears to be closer than that of the U.S.
In this paper, we present a systematic method to derive spectrum of high-order pulse and a novel design of e-Learning system that deals with deriving the spectrum using concept-based branching method. Spectrum of high-order pulse can be derived using conventional methods including 'Consecutive Differentiations' or 'Convolutions', however, their complexity of calculation should be too high to be used as the order of the pulse increase. We develop a recursive algorithm according to the order of pulse, and then derive the formula of spectrum connected to the order with a newly designed look-up table. Moving along, we design an e-Learning content for studying the procedure of deriving high-order pulse spectrum described above. In this authoring, we use the concept-based object branching method including conventional page or title-type branching in sequential playing. We design all four Content-pages divided into 'Modeling', 'Impulse Response and Transfer Function', 'Parameters' and 'Look-up Table' by these conceptual objects. And modules and sub-modules are constructed hierarchically as conceptual elements from the Content-pages. Students can easily approach to the core concepts of the analysis because of the effects of our new teaching method. We offer step-by-step processes of the e-Learning content through unit-based branching scheme for difficult modules and sub-modules in our system. In addition we can offer repetitive learning processes for necessary block of given learning objects. Moreover, this method of constructing content will be considered as an advanced effectiveness of content itself.
Subband coding is to divide the signal frequency band into a set of uncorrelated frequency bands by filtering and then to encode each of these subbands using a bit allocation rationale matched to the signal energy in that subband. The actual coding of the subband signal can be done using waveform encoding techniques such as PCM, DPCM and vector quantizer(VQ) in order to obtain higher data compression. Most researchers have focused on the error in the quantizer, but not on the overall reconstruction error and its dependence on the filter bank. This paper provides a thorough analysis of subband codecs and further development of optimum filter bank design using vector quantizer. We compute the mean squared reconstruction error(MSE) which depends on N the number of entries in each code book, k the length of each code word, and on the filter bank coefficients. We form this MSE measure in terms of the equivalent quantization model and find the optimum FIR filter coefficients for each channel in the M-band structure for a given bit rate, given filter length, and given input signal correlation model. Specific design examples are worked out for 4-tap filter in 2-band paraunitary filter bank structure. These optimum paraunitary filter coefficients are obtained by using Monte Carlo simulation. We expect that the results of this work could be contributed to study on the optimum design of subband codecs using vector quantizer.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.8
/
pp.147-156
/
2016
This study analyzed the impact of changes in the construction business on construction company insolvency according to their size using the vector error correction model. First, this study applied EDF (Expected Default Frequency), which was calculated by KMV (Kealhofer, McQuown and Vasicek) model, as a variable to indicate the insolvency of construction companies. This study set 30 construction companies listed to KOSPI/KOSDAQ for estimating the EDF by size and construction companies were divided into two groups according to their size. To examine the construction business cycles, the amount of construction orders according to the type-residential, non-residential, and civil work- was used as a variable. The serial data was retrieved from TS2000 established by the Korea Listed Companies Association (KLCA), Statistics Korea. The analysis period was between the second quarter of 2001 and fourth quarter of 2015. As a result of calculating the EDF of construction companies by size, as it is generally known, the large-sized construction companies showed lower levels of insolvency than relatively smaller-sized construction companies. On the other hand, impulse response analysis based on VECM confirmed that the level of insolvency of large-scaled companies is more sensitive to business fluctuations than relatively smaller-sized construction companies, particularly changes in the residential construction market. Hence it is a major factor affecting the changes in insolvency of large-sized construction companies.
본 연구는 현재 미국에서 거래되고 있는 세 가지 주가지수선물 상호간의 일중(intradaily) 가격선도(price leadership) 관계에 관한 실증분석이다. 본 연구가 기존의 연구와 다른점은, 기존의 연구가 주가지수선물과 그 기준이 되는 현물 가격사이의 가격 선도 관계에 초점을 두고 있는데 반하여 본 연구는 주가지수선물 시장 사이에서 존재하는 가격 선도관계를 분석하고 있다는 점이다. 실증 분석의 대상이 된 주가지수선물들은 Chicago Mercantile Exchange의 Standard and Poor's 500 Index(S&P 500), New York Futures Exchange의 New York Stock Exchange Composit Index (NYSE), 그리고 Chicago Board of Trade의 Major Market Index(MMI)이다. 만약 이들 시장들이 정보의 전달에 있어서 효율적(informationally efficient) 이라면 이들 가격간에 선도-지연(lead-lag) 현상은 존재하지 않을 것이다. 그러나 어느 한 시장이 새로운 정보를 선물가격에 반영하는데 다른 시장에 비해 상대적으로 느리다면, 이들 시장 상호간에는 가격의 전이(transmission)현상이 존재하게 될 것이다. 이들 선물간의 일중 가격선도 관계 연구는 이러한 시장의 효율성 문제를 밝히는데 의의가 있을 뿐만 아니라, 시장간의 단기적 가격 괴리를 이용하려는 차익거래자들에게도 유용하게 쓰일 수 있을 것이다. 본 연구는 위에서 언급한 각각의 주가지수선물들이 가격 선도성을 가질 수 있는 이유와 관련된 다음과 같은 세 가지 가설을 설정하였다. 첫째 가설은, 가격의 선도성은 거래량과 관련이 있다는 것이다. 즉, 이들 주가지수선물 중 가장 거래량이 많은 S&P 500 선물이 다른 선물을 선도할 것이라는 가설이다. 둘째, 가격의 선도성은 주가지수를 구성하는 주식의 수에 비례한다는 가설이다. 다시 말하면, 보다 않은 수로 구성된 주가지수일수록 정보처리 속도가 빠르다는 가설이다. 따라서, 본 연구에 포함된 주가지수선물 중 가장 많은 수의 주식을 대상으로 하는 NYSE 선물이 다른 선물을 선도할 것이다. 마지막 가설은 정보의 처리는 대형주 혹은 기관선호주(institutionally-favored)들이 주도한다는 것이다. 따라서, 주로 이와 같은 주식들로 구성 된 MMI 선물이 선도성을 가질 수 있다는 것이다. 위의 가설들을 검증하고 시장간의 가격 선도관계를 분석하기 위하여 본 연구는 vector autoregressive(VAR) 모형을 이용하여 충격-반응 함수(impulse response functions)를 계산하고, 분산분해(variance decomposition)를 수행하였다. 또한 가격 상호간에 존재할지도 모르는 공적분(cointegration)관계를 Johansen(1991)과 Jokansen and Juselius (1992) 등이 제시한 다변량 공적분 검정(multivariate cointegration test)를 통하여 분석하였다. 분석기간은 1986년 1월부터 1990년 7월까지이며, 각 주가지수선물들의 5분 간격 data를 사용하였다. 연구결과, 충격-반응 분석은 어느 한 시장에서의 충격(shock)은 다른 시장으로 매우 빠르게 전달되고 있음을 보여 주었다. 그러나 충격의 지속정도는 그 충격의 진원지에 따라 달랐다. 즉, NYSE나 MMI 선물로부터 발생 한 충격은 다른 시장의 가격에 5분 안에 반영을 끝냈지 만 S&P 500 선물에서 발생한shock은 그 이상 지속되었다. 또한, 분산분해 결과 S&P 500 선물이 자기자신 뿐만 아니라 다른 시장의 예상하지 못했던 움직임(unexpected movements)을 설명하는데 가장 큰 설명력(explanatory power)을 가지고 있었다. 결론적으로 S&P 500 선물이 다른 선물을 약 5분 간격으로 선도하였다. 이는 가격의 선도가 거래량과 밀접한 관계가 있음을 보여 주는 것이다.
A new procedure needs to be developed to predict the dynamic layer properties under moving truck loads. In this study, a computer code to evaluate layer moduli of asphalt concrete pavement from measured interior deflections at various depths were developed and verified from numerical model tests. Interior deflections of the pavement are measured from Multi-Depth Deflectometer(MDD). It was found that errors between the given and backcalculated moduli in numerical analysis were less than 0.32% for several numerical models tested. When impact loads were used, a technique to determine the depth to virtual rigid base was proposed through the analysis of compressive wave velocity and impulse loading durations. It was found that errors between the given and backcalculated moduli in numerical analysis were less than 0.114% when virtual rigid base was considered in numerical analysis. The pavement behavior must be evaluated under various vehicle speeds when determining the dynamic interaction between the loading vehicle and pavement system. To evaluate the dynamic behavior on asphalt concrete pavement under various vehicle speeds, truck moving tests were carried out. From the test results with respect to vehicle speed, it was found that the vehicle speed had significant effect on actual response of the pavement system. The lower vehicle speed generates the higher interior deflections, and the lower dynamic modulus.
This This paper investigates the variation of the factors to determinate housing price in Seoul metropolitan area after sub-prime financial crisis, in Korea, using a VAR model. The model includes housing price and housing rent (Jeonse) in Seoul metropolitan area from 1999 to 2011, and uses interest rate, real GDP, KOSPI, Producer Price Index and practices to impulse response and variance decomposition analysis to grasp the dynamic relation between a variable of macro economy and and a variable of housing price. Data is classified to 2 groups before and after the 3rd quater of 2008, when sub-prime crisis occurred; one is from the 1st quater of 1999 to the 3rd quater of 2008, and the other is from the 2nd quater of 1999 and the 4th quater of 2011. As a result, comparing before and after sub-prime crisis, housing price is more influenced by its own variation or Jeonse price's variation instead of interest rate and KOSPI. Both before and after sub-prime financial crisis, Jeonse price is also influenced by its own variation and housing price. While after sub-prime financial crisis, influences of Producer Price Index, KOSPI and interest rate were weakened, influence of real GDP is expanded. As housing price and housing rent are more influenced by real economy factors such as GDP, its own variation than before sub-prime financial crisis, the recent trend that the house prices is declined is difficult to be converted, considering domestic economic recession and uncertainty, continued by Europe financial crisis. In the future to activate the housing business, it ia necessary to promote purchasing power rather than relaxation of financial and supply regulation.
This study estimated the fiberboard demand using VAR and econometric model, and compared the prediction accuracy of the two models. And the variance decomposition and impulse response were analyzed using VAR model, and predicted the fiberboard demand. The VAR model was specified with lagged dependent variable, lagged own price, lagged construction product, dummy. The econometric model was specified with own price, substitute price, construction product, dummy. The dummy variable reflected the abrupt decrease in fiberboard demand in the late 1990's. The results showed that the fiberboard demand prediction can be performed more accurately by VAR model than by econometric model. In the VAR model of fiberboard demand, after twelve months, the construction product change accounts for about fifty percent of variation in the demand, and the own price change accounts for about thirty percent of variation in the demand. On the other hand, the impact of a shock to the construction product is significant for about twelve months on the demand of fiberboard, and the impact of a shock to the own price is significant for about six months on the demand of fiberboard.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.