• 제목/요약/키워드: Improved filter

Search Result 1,354, Processing Time 0.024 seconds

A Varactor-Tuned RF Tunable Bandpass Filter with Improved Passband Flatness

  • Kim, Byung-Wook;Yun, Du-Il;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.124-127
    • /
    • 2002
  • A RF tunable bandpass filter using dielectric resonators and varactor diodes is redesigned to improve the passband flatness. Since the tunable liters are generally of narrow bandwidth and the Q value of the varactor diode is usually very low, the passband flatness is strongly deteriorated by sizeable distortion loss. To remedy this problem, we construct modified Chebyshev type filter by use of network synthesis techniques. The key of modified Chebyshev type filter is the rearrangement of the passband poles to improve the passband flatness. To maintain the constant passband bandwidth, design techniques of input/output stage and coupling windows are also applied. Experimental results show that the passband flatness can be improved by purposed method without any additional RF amplitude equalizer.

Effective Noise Suppression in Edge Region Using Modified Wiener Filter (수정된 Wiener 필터를 사용한 에지 영역에서의 효과적인 잡음 제거)

  • Song Young-Chul
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.3
    • /
    • pp.173-180
    • /
    • 2003
  • The modified Wiener filtering method is proposed for effective noise suppression in edge region of images corrupted by additive white gaussian noise. Although the pixels classified as a edge region in the conventional Wiener filter have lots of noise components, the conventional Wiener filler cannot remove noise effectively due to the preserving of edges. To reduce noise well in edge region, we modify filter coefficients of the conventional Wiener filter The modified filter coefficients increase in noise suppression effect In edge region, while they preserve edges for strong edge region. From simulation $(256{\time}256$ size, 256 graylevel images) filtered images by the proposed method show much improved subjective image quality with some improved peak signal-to-noise ratio compared to those by the conventional Wiener filtering.

An IMM Approach for Tracking a Maneuvering Target with Kinematic Constraints Based on the Square Root Information Filter

  • Kim, Kyung-Youn;Kim, Joong-Soo
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.39-44
    • /
    • 1996
  • An efficient interacting multiple mode(IMM) approach for tracking a maneuvering target with kinematic constraints is described based on the square root information filter(SRIF). The SRIF is employed instead of the conventional Kalman filter since it exhibits more efficient features in handling the kinematic constraints and improved numerical characteristics. The kinematic constraints are considered in the filtering process as pseudomeasurements where the degree of uncertainty is represented by the magnitude of the pseudomeasurement noise variance. The Monte Carlo simulations for the constant speed, maneuvering target are provided to demonstrate the improved tracking performance of the proposed algorithm.

  • PDF

A Study on the Characteristics Improvement of Chebyshev Filter Function (Chebyshev 필터 함수의 특성 개선에 관한 연구)

  • You, Jae-Hoon;Choi, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.753-759
    • /
    • 2020
  • A modified Chebyshev lowpass filter function with progressively diminishing ripples in the passband is proposed and analyzed in the frequency domain. Owing to the diminishing ripples, the passband magnitude characteristic of the proposed Chebyshev function has improved compared to the classical Chebyshev function. In addition, the phase characteristics of the proposed Chebyshev function were improved considerably compared to that of the Chebyshev function, and the time delay of the proposed function was much simpler and flatter. In addition, the proposed Chebyshev filter was realizable by the passive doubly terminated ladder network delivering maximum power transfer for the order n, even or odd, thus making themselves amenable to low-sensitivity active RC or switched capacitor filters through the simulation techniques. To verify the proposed Chebyshev filter characteristics, a 6th order passive doubly terminated ladder lowpass filter was designed and analyzed using the MATLAB and SPICE program. Thus, the proposed Chebyshev function can remove the drawbacks of the classical Chebyshev function and could be applicable to the design of a filter with an improved filter size, phase, and time delay characteristics for various signal processing.

Extraction of Optimal Time-Delay in Adaptive Command Shaping Filter for Flexible Manipulator Control (유연한 매니퓰레이터 제어를 위한 적응형 명령성형 필터의 최적 시간지연 값 추출)

  • Park, Joo-Han;Rhim, Sung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.564-572
    • /
    • 2008
  • The performance of the direct adaptive time-delay command shaping filter depends on the select time-delay. In the previously introduced direct adaptive command shaping filter, however, the time-delay value is fixed and only the magnitudes of the impulses are learned. In this paper, the authors introduce a new scheme to adapt the time-delay which is to be used in conjunction with the direct adaptive command shaping for the improved vibration suppression in flexible motion system. In order to formulate the time-delay adaptation scheme, the authors have analyzed the effect of the time-delay value on the performance of the direct adaptive command shaping filter. By modifying the direct adaptation formula based on the analysis result the authors have established a set of equations to adapt the time-delay toward the optimal value. Simulation results show the effectiveness of the proposed time-delay adaptation approach for the improved vibration suppression.

An Improved Hybrid Kalman Filter Design for Aircraft Engine based on a Velocity-Based LPV Framework

  • Liu, Xiaofeng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.535-544
    • /
    • 2017
  • In-flight aircraft engine performance estimation is one of the key techniques for advanced intelligent engine control and in-flight fault detection, isolation and accommodation. This paper detailed the current performance degradation estimation methods, and an improved hybrid Kalman filter via velocity-based LPV (VLPV) framework for these needs is proposed in this paper. Composed of a nonlinear on-board model (NOBM) and VLPV, the filter shows a hybrid architecture. The outputs of NOBM are used for the baseline of the VLPV Kalman filter, while the system performance degradation factors on-line estimated by the measured real system output deviations are fed back to the NOBM for its updating. In addition, the setting of the process and measurement noise covariance matrices' values are also discussed. By applying it to a commercial turbofan engine, simulation results show the efficiency.

Improved Adaptive Smoothing Filter for Indoor Localization Using RSSI

  • Kim, Jung-Ha;Seong, Ju-Hyeon;Ha, Yun-Su;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.179-186
    • /
    • 2015
  • In the indoor location estimation system, which has recently been actively studied, the received signal strength indicator contains a high level of noise when measuring the signal strength in the range between two nodes consisting of a receiver and a transceiver. To minimize the noise level, this paper proposes an improved adaptive smoothing filter that provides different exponential weights to the current value and previous averaged one of the data that were obtained from the nodes, because the characteristic signal attenuation of the received signal strength indicator generally has a log distribution. The proposed method can effectively decrease the noise level by using a feedback filter that can provide different weights according to the noise level of the obtained data and thus increase the accuracy in the distance and location without an additional filter such as the link quality indicator, which can verify the communication quality state to decrease the range errors in the indoor location recognition using ZigBee based on IEEE 802.15.4. For verifying the performance of the proposed improved adaptive smoothing filter, actual experiments are conducted in three indoor locations of different spatial sections. From the experimental results, it is verified that the proposed technique is superior to other techniques in range measurement.

A New Master-Slave Filter-Bank with Series-Parallel Structure for Tracking Center Frequency (주파수 추적을 위한 직병렬 구조의 새로운 주종 필터뱅크)

  • 윤형식;임재환;이석필;박상희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.339-345
    • /
    • 1994
  • A new filter-bank is proposed in order to track center frequency of narrow band signal. The two banks are connected in series-parallel. The master filter bank which is made of traditional filter bank detects the center frequency roughly. And the performance for tracking center frequency is greatly improved by the slave filter bank which is based on energy-difference estimator. Computer simulations show that it achieves a good tracking accuracy.

  • PDF

Median modified wiener filter for improving the image quality of gamma camera images

  • Park, Chan Rok;Kang, Seong-Hyeon;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2328-2333
    • /
    • 2020
  • The filter technique was applied to noise images, as noise is the significant factor that cause poor image quality due to lower photon counting. The purpose of this study is to confirm that image quality can be improved using the median modified Wiener filter (MMWF) technique; this is achieved via a National Electrical Manufacturers Association International Electrotechnical Commission body phantom with four large spheres that are filled with the 99mTc radioisotope when evaluating the image quality. Conventional filters such as Wiener, Gaussian, and median filters were designed, and signal to noise ratio, coefficient of variation, and contrast to noise ratio were used as the evaluation parameters. The improvement in the image quality was in the following order, from the least to the highest improvement, in all cases: Wiener filter, Gaussian filter, median filter, and the MMWF technique. The results show that the image quality was improved from 20.6 to 65.5%, 7.4-40.3%, and 12.7-44.7% for the SNR, COV, and CNR values, respectively, when using the MMWF technique, compared with the use of conventional filters. In conclusion, our results demonstrated that the MMWF technique is useful for reducing the noise distribution in gamma camera images.

CALIBRATION OF VECTOR MAGNETOGRAMS BY SOLAR FLARE TELESCOPE OF BOAO

  • MOON YONG-JAE;PARK YOUNG DEUK;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.65-73
    • /
    • 1999
  • In this study we present a new improved nonlinear calibration method for vector magnetograms made by the Solar Flare Telescope of BOAO. To identify Fe I 6302.5 line, we have scanned monochromatic images of the line integrated over filter passband, changing the location of the central transmission wavelength of a Lyot filter. Then we obtained a filter-convolved line profile, which is in good agreement with spectral atlas data provided by the Sacramento Peak Solar Observatory. The line profile has been used to derive calibration coefficients of longitudinal and transverse fields, employing the conventional line slope method under the weak field approximation. Our improved nonlinear calibration method has also been used to calculate theoretical Stokes polarization signals with various angles of inclination of magnetic fields. For its numerical test, we have compared input magnetic fields with the calibrated ones, which have been derived from the new improved non-linear method and the conventional method respectively. The numerical test shows that the calibrated fields obtained from the improved method are consistent with the input fields, but not with those from the conventional method. Finally, we applied our new improved method to a dipole model which characterizes a typical field configuration of a single, round sunspot. It is noted that the conventional method remarkably underestimates the transverse field component near the inner penumbra.

  • PDF