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An IMM Approach for Tracking a Maneuvering
Target with Kinematic Constraints Based on the
Square Root Information Filter

Kyung Youn Kim and Joong Sco Kim

Abstract

An efficient interacting multiple model(IMM) approach for tracking a maneuvering target with kinematic constraints is
described based on the square root information filter(SRIF). The SRIF is employed instead of the conventional Kalman filter
since it exhibits more efficient features in handling the kinematic constraints and improved numerical characteristics. The
kinematic constraints are considered in the filtering process as pseudomeasurements where the degree of uncertainty is
represented by the magnitude of the pseudomeasurement noise variance. The Monte Carlo simulations for the constant speed,
maneuvering target are provided to demonstrate the improved tracking performance of the proposed algorithm.

I. Introduction

An accurate mathematical model for the target dynamics is
prerequisite in the target tracking problems. If the system
model is not correct, track loss may occur easily in the
tracking process. The system model of a target moving with
constant velocity in a straight line is different from that of
a target moving with acceleration or maneuver. A
nonmaneuvering target can be modeled accurately with a
constant velocity model. However, when the target
maneuvers, the tracking performance of the constant velocity
filter can be degraded significantly. A constant acceleration
model can be utilized to track such a target, but the
acceleration of maneuvering target are often time-varying.
Also, the constant acceleration filter has worse tracking
performance than that of the constant velocity filter when the
target does not maneuver. There have been many approaches
in the literature[1-4] to get around this dilemma of model
mismatch problem, but it still remains a great deal. of debate
surrounding this problem. Among them, the IMM algorithm [
5-8] may provide rather well tracking performance with
comparatively efficient computation.

The IMM algorithm consists of a parallel. Kalman filter for
each model, a model probability evaluator, an estimate
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mixer at the input of each Kalman filter, and an estimate

combiner at the output of the filters. The IMM algorithm for

target tracking is implemented using models of different

dimension: a second-order constant velocity model which is

dominating when the target is nonmaneuvering state and one
or several third-order acceleration models for the maneu-

vering state with different process noise levels.

In spite of the simplicity and the versatility on target
tracking problems, the conventional Kalman filter mech-
anization is sensitive to computer roundoff and exhibits
numerically unstable characteristics[9]. This is one of the
Kalman filter’s most notable weakness since the numerical
accuracy sometimes degrades to the point where the results
are meaningless. To counter such problems, more
numerically stable and accurate algorithms such as U-D or
SRIF formulations [10-12] are introduced as an alternative
to the conventional Kalman filter. Although algebraically
equivalent to the Kalman filter, the SRIF exhibits attractive
numerical features, particularly in the ill-conditioned
problems[11].

There are some tracking problems which are subject to
kinematic constraint as well as dynamic constraint. When the
trajectory of a target satisfies the kinematic constraint, the
kinematic constraint can be used as additional information for
the motion of the target to reduce the tracking uncertainty.
One way to handle the kinematic constraint is to find a
suitable set of state variables to incorporate it into the form
of dynamic constraint. However, it may result in extremely
complicated nonlinear model since most of the kinematic
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constraint for the maneuvering target are nonlinear. The more
reasonable approach is to introduce the kinematic constraint
into the tracking process as a additional pseudomeasurement{
13,14]. In this approach, the degree of constraint adherence
is represented by pseudomeasurement noise variance. This
approach will allow any kinematic constraint to be
incorporated without significantly increasing the com-
putational cost.

In this paper, an efficient IMM algorithm is presented for
tracking a maneuvering target with kinematic constraint
based on the SRIF, which is called KCSRIF-IMM for
brevity. The KCSRIF-IMM algorithm employed two different
kinematically constrained SRIF(KCSRIF): one for the
constant velocity dynamic model and the other for the
constant acceleration dynamic model. The SRIF is selected
over the conventional Kdlman filter since it exhibits more
efficient features in handling the kinematic constraint and
improved numerical characteristics. The nonlinear kinematic
constraint is linearized about time updated estimate by using
Taylor series and put into the data array in the measurement
update process. The Monte Carlo simulations for the constant
speed, maneuvering target are provided to demonstrate the
improved tracking performance of the proposed algorithm.

II. Problem Formulation

In general, it is better to represent the motion of the target
in the Cartesian coordinate frame for the computational
simplicity.
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where xie R™"' is the state vector of the target at time k

for model i. x' consists of position and velocity and consists
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for model 2 and T is the sampling period.

The variable w),e R**! is a zero-mean white Gaussian
process noise for model i, which has known covariance
matrix such as '

Elwi(w})T] = @ oy . 3)
where §,, is the Kronecker delta function which is equal to
one if k=I, otherwise it is zero. .

Since most sensors used for target tracking make
measurements in polar coordinate frame, the measurement
equation is usually nonlinear. The nonlinearity is generated
from the transformation of the polar-to-Cartesian coordinate
frame. Here, for convenience, we assume that the

measurements provide only the position of the target in the
Cartesian coordinate frame.

2= Hxi+ vl 9)
where the measurement matrix H e R%*™ is given by
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100000000
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The variable vie R*! is a zero-mean white Gaussian
measurement noise for model i, which has known covariance
matrix such as

Elwi(v)7]1 = R'sy 12)

" The process noise wj and measurement noise v are

assumed to be uncorrelated so that

Elwi(v))7] = o for all k. (13)

In general, (1) is referred to as a dynamic constraint. There
are, however, some practical problems which are subject to
kinematic constraint as well as dynamic constraint. The
kinematic constraints for model i can be expressed as

Ci(x}) = ti ' (14)

where uie R™! represents the uncertainty of the.

constraints and assumed to be white Gaussian noise with
known covariance

Elui(ui)T) = M 8u (15

In addition, it is assumed that the covariance matrices Q'
R, and M’ are symmetric and positive semi-definite so that
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their square-roots are defined as follows:

(@) '=(R)TR, - (16)
(R = (RDT RY, : an
(MY '=(R)T R, 18)

I, KCSRIF-IMM approach

A KCSRIF-IMM approach is developed here to track a
target with kinematic constraint by employing two different
KCSRIF’s: a second-order CV filter for the quiescent mode
and a third-order CA filter for the maneuvering mode. The
approach consists of a KCSRIF for each model, a model
probability evaluator, an estimate mixer at the input of the
filters, an estimate combiner at the output of the filters and
a pseudomeasurement calculator between time and
measurement update process of each filter. The flow diagram
of the KCSRIF-IMM algorithm is depicted in Figure 1,
where x,, is the state estimate which is obtained from a
probabilistic sum of the each filter output, x%, is the state
estimate obtained from the ith filter, A% is the model
likelihood function for the ith model at time %, 7;; is the
model probability for the i-th model at time k, and C and
C are parameters for the pseudomeasurement, which is
defined in (28) and (29), respectively. It is noted in Figure
1 that the KCSRIF is employed instead of the conventional
Kalman filter and the pseudomeasurement calculator is added
to the standard IMM approach to accommodate the kinematic

constraints. An underlying Markov chain is assumed to
govern the switching of each model.
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Fig. 1. The flow diagram of the KCSRIF-IMM
algorithm.

The KCSRIF-IMM algorithm for tracking a maneuvering
target with kinematic constraints can be outlined in the
following 4 steps by considering the standard IMM algorithm

and Chapter III. A detailed derivation and explanation about
the standard IMM algorithm can be found in references[5-8].

STEP 1: Interaction Mixing
At the beginning of each cycle, a priori state estimate
Pi/,_lu,_l, and model

probability 7%, (i=1, 2) is needed for each model. The state

xs-1e_1» its error covariance

estimate and its error covariance are mixed by each
component as follows:

2
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where p; is the assumed transition probability matrix for the

Markov chain, which imply for switching from model j to
model i

STEP 2: Filtering(The KCSRIF was derived in detail in
reference  [15].)
(1) Time Update

The two mixed state estimate and its error covariance are
time updated in the KCSRIF as
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The time updated state estimate can be obtained from (23 as

p-1 = (Ror-1) "' Za1 (26)

(2) Measurement Update )
The two time updated state estimate and its error
covariance are measurement updated in the KCSRIF as
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where Ei(x‘,,l #-1)is the Jacobian which is defined by
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Eklk—li = axx

and ?i(xi,,,k_l) can be considered as pseudomeasurement
given by
?l(xiklk—l) = Ei(xiklk—l)xik!k——l — C (x'qe-1) 29)
The filtered state estimate can be obtained from (27) as
xiklk = (Rilzlk)_lziklk (30)

STEP 3: Model Likelihood Computation and Model
Probability Update ,
The likelihood function of each model is computed as

i 1 _ AT (13T 1
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where z; and S are the residual and its covariance of the
i-th filter, respectively. In the SRIF, it is important to note
that [15] -
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The model probability is updated by using (31) as
n=Ltaie (34)

where ¢ is defined in (22) and ¢ is another normalization
constant which is defined by

1
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STEP 4: Combination of State Estimate and Error Covariance
Using the updated model probability (34), the state

estimate and error covariance are combined as

2
Xpe = Z:lx'klk Tk . (36)
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IV. Simulation Results

To demonstrate the tracking performance of the
KCSRIF-IMM algorithm, a target which has the trajectories
consisting of a quiescent and maneuvering mode is selected
for use in a simulation study. The target moves in a straight
line with constant velocity for the first 70 samples and then
it performs "C” curve maneuver with constant speed for the
next 60 samples and finally it comes back to the constant

velocity motion for the last 70 samples. Thus the number of
samples K is 200. The maneuvering target with constant
speed can be described as

das

a =0 (38)

where S is the speed of the target given by

. . 1
S=(x+3*+2D)? 39
In view of (38) and (39), we can -obtain the following
kinematic constraint for the constant speed, maneuvering
target:
ViA+p=0 (40)
where the target velocity vector V and acceleration vector A
are defined by
V=I[xyz]T @1
A=[5iy 1T “2)
Two-dimensional Cartesian coordinate profile of the true
position trajectory with initial state x, = [1000 150 0 2000
100 017 is depicted in Figure 2.
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Fig. 2. Target trajectory in Cartesian coordinate frame.

The SRIF-IMM and KCSRIF-IMM algorithms are used to
track the target given in Figure 2. The KCSRIF-IMM
algorithm consists of a second-order constant velocity SRIF
with process noise variance @' = 50/, and measurement
R'=1, and a third-order constant

R*=1p, and

noise variance
acceleration KCSRIF with @* = 501,
pseudomeasurerhent noise variance - M=1. The same
parameter values are used for both filters except the
kinematic constraint. The sampling period is chosen as so
that the simulation was performed for 50 seconds. The initial
estimated state and the initial error covariance matrix were
chosen as wh_, = xf (for I=1,2), P\, _, = 100/, 'and
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P%,_, = 1001, respectively . In general, the choice of initial
covariance matrix is not important as its effect quickly
decays with increasing time. The assumed model switching
probabilities(Markov transition probabilities) are 0.05 for p,

and p, and 0.95 for p,; and py.
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Monte Carlo simulations of 30 experiments are conducted
to compare the tracking performance of the two algorithms.
The average root-mean-square errors(RMSE’s) for position,
velocity, and acceleration are shown in Figure 3, 4, and 5,
respectively. It is observed that the KCSRIF-IMM
outperforms the SRIF-IMM during the maneuver in
estimation accuracy, especially for velocity and acceleration.
It is noted from (40), (41), and (42) that the kinematic
constraint is composed of velocity and acceleration. Figure 6
(a) and (b) represent the probability of CV and CA model for
the two algorithms, respectively. As can be expected, the
probability of CV model dominates during the quiescent

period and that of CA model dominates during the
maneuvering period.
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Fig. 6. Probability of the CV and CA model.

VI. Conclusions

A modified IMM algorithm has been formulated to track
a maneuvering target with kinematic constraints based on the
SRIF mechanization. The modified IMM algorithm employed
two different kinematically constrained SRIF: one for the
constant velocity dynamic model and the other for the
constant acceleration dynamic model. The SRIF is selected
over the conventional Kalman filter since it exhibits more
efficient features in handling the kinematic constraint and
improved numerical characteristics. The nonlinear kinematic
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constraint is linearized al;out time updated estimate by using
Taylor series and put into the data array in the measurement
update process. The simulation results for the constant speed,
maneuvering target showed the improved tracking
performance of the proposed algorithm,
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